Cargando…

Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics

An ideal network window electrode for photovoltaic applications should provide an optimal surface coverage, a uniform current density into and/or from a substrate, and a minimum of the overall resistance for a given shading ratio. Here we show that metallic networks with quasi-fractal structure prov...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Bing, Peng, Qiang, Li, Ruopeng, Rong, Qikun, Ding, Yang, Akinoglu, Eser Metin, Wu, Xueyuan, Wang, Xin, Lu, Xubing, Wang, Qianming, Zhou, Guofu, Liu, Jun-Ming, Ren, Zhifeng, Giersig, Michael, Herczynski, Andrzej, Kempa, Krzysztof, Gao, Jinwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052667/
https://www.ncbi.nlm.nih.gov/pubmed/27667099
http://dx.doi.org/10.1038/ncomms12825
_version_ 1782458272375111680
author Han, Bing
Peng, Qiang
Li, Ruopeng
Rong, Qikun
Ding, Yang
Akinoglu, Eser Metin
Wu, Xueyuan
Wang, Xin
Lu, Xubing
Wang, Qianming
Zhou, Guofu
Liu, Jun-Ming
Ren, Zhifeng
Giersig, Michael
Herczynski, Andrzej
Kempa, Krzysztof
Gao, Jinwei
author_facet Han, Bing
Peng, Qiang
Li, Ruopeng
Rong, Qikun
Ding, Yang
Akinoglu, Eser Metin
Wu, Xueyuan
Wang, Xin
Lu, Xubing
Wang, Qianming
Zhou, Guofu
Liu, Jun-Ming
Ren, Zhifeng
Giersig, Michael
Herczynski, Andrzej
Kempa, Krzysztof
Gao, Jinwei
author_sort Han, Bing
collection PubMed
description An ideal network window electrode for photovoltaic applications should provide an optimal surface coverage, a uniform current density into and/or from a substrate, and a minimum of the overall resistance for a given shading ratio. Here we show that metallic networks with quasi-fractal structure provides a near-perfect practical realization of such an ideal electrode. We find that a leaf venation network, which possesses key characteristics of the optimal structure, indeed outperforms other networks. We further show that elements of hierarchal topology, rather than details of the branching geometry, are of primary importance in optimizing the networks, and demonstrate this experimentally on five model artificial hierarchical networks of varied levels of complexity. In addition to these structural effects, networks containing nanowires are shown to acquire transparency exceeding the geometric constraint due to the plasmonic refraction.
format Online
Article
Text
id pubmed-5052667
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50526672016-10-21 Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics Han, Bing Peng, Qiang Li, Ruopeng Rong, Qikun Ding, Yang Akinoglu, Eser Metin Wu, Xueyuan Wang, Xin Lu, Xubing Wang, Qianming Zhou, Guofu Liu, Jun-Ming Ren, Zhifeng Giersig, Michael Herczynski, Andrzej Kempa, Krzysztof Gao, Jinwei Nat Commun Article An ideal network window electrode for photovoltaic applications should provide an optimal surface coverage, a uniform current density into and/or from a substrate, and a minimum of the overall resistance for a given shading ratio. Here we show that metallic networks with quasi-fractal structure provides a near-perfect practical realization of such an ideal electrode. We find that a leaf venation network, which possesses key characteristics of the optimal structure, indeed outperforms other networks. We further show that elements of hierarchal topology, rather than details of the branching geometry, are of primary importance in optimizing the networks, and demonstrate this experimentally on five model artificial hierarchical networks of varied levels of complexity. In addition to these structural effects, networks containing nanowires are shown to acquire transparency exceeding the geometric constraint due to the plasmonic refraction. Nature Publishing Group 2016-09-26 /pmc/articles/PMC5052667/ /pubmed/27667099 http://dx.doi.org/10.1038/ncomms12825 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Han, Bing
Peng, Qiang
Li, Ruopeng
Rong, Qikun
Ding, Yang
Akinoglu, Eser Metin
Wu, Xueyuan
Wang, Xin
Lu, Xubing
Wang, Qianming
Zhou, Guofu
Liu, Jun-Ming
Ren, Zhifeng
Giersig, Michael
Herczynski, Andrzej
Kempa, Krzysztof
Gao, Jinwei
Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics
title Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics
title_full Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics
title_fullStr Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics
title_full_unstemmed Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics
title_short Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics
title_sort optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052667/
https://www.ncbi.nlm.nih.gov/pubmed/27667099
http://dx.doi.org/10.1038/ncomms12825
work_keys_str_mv AT hanbing optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT pengqiang optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT liruopeng optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT rongqikun optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT dingyang optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT akinogluesermetin optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT wuxueyuan optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT wangxin optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT luxubing optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT wangqianming optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT zhouguofu optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT liujunming optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT renzhifeng optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT giersigmichael optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT herczynskiandrzej optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT kempakrzysztof optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics
AT gaojinwei optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics