Cargando…
Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics
An ideal network window electrode for photovoltaic applications should provide an optimal surface coverage, a uniform current density into and/or from a substrate, and a minimum of the overall resistance for a given shading ratio. Here we show that metallic networks with quasi-fractal structure prov...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052667/ https://www.ncbi.nlm.nih.gov/pubmed/27667099 http://dx.doi.org/10.1038/ncomms12825 |
_version_ | 1782458272375111680 |
---|---|
author | Han, Bing Peng, Qiang Li, Ruopeng Rong, Qikun Ding, Yang Akinoglu, Eser Metin Wu, Xueyuan Wang, Xin Lu, Xubing Wang, Qianming Zhou, Guofu Liu, Jun-Ming Ren, Zhifeng Giersig, Michael Herczynski, Andrzej Kempa, Krzysztof Gao, Jinwei |
author_facet | Han, Bing Peng, Qiang Li, Ruopeng Rong, Qikun Ding, Yang Akinoglu, Eser Metin Wu, Xueyuan Wang, Xin Lu, Xubing Wang, Qianming Zhou, Guofu Liu, Jun-Ming Ren, Zhifeng Giersig, Michael Herczynski, Andrzej Kempa, Krzysztof Gao, Jinwei |
author_sort | Han, Bing |
collection | PubMed |
description | An ideal network window electrode for photovoltaic applications should provide an optimal surface coverage, a uniform current density into and/or from a substrate, and a minimum of the overall resistance for a given shading ratio. Here we show that metallic networks with quasi-fractal structure provides a near-perfect practical realization of such an ideal electrode. We find that a leaf venation network, which possesses key characteristics of the optimal structure, indeed outperforms other networks. We further show that elements of hierarchal topology, rather than details of the branching geometry, are of primary importance in optimizing the networks, and demonstrate this experimentally on five model artificial hierarchical networks of varied levels of complexity. In addition to these structural effects, networks containing nanowires are shown to acquire transparency exceeding the geometric constraint due to the plasmonic refraction. |
format | Online Article Text |
id | pubmed-5052667 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-50526672016-10-21 Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics Han, Bing Peng, Qiang Li, Ruopeng Rong, Qikun Ding, Yang Akinoglu, Eser Metin Wu, Xueyuan Wang, Xin Lu, Xubing Wang, Qianming Zhou, Guofu Liu, Jun-Ming Ren, Zhifeng Giersig, Michael Herczynski, Andrzej Kempa, Krzysztof Gao, Jinwei Nat Commun Article An ideal network window electrode for photovoltaic applications should provide an optimal surface coverage, a uniform current density into and/or from a substrate, and a minimum of the overall resistance for a given shading ratio. Here we show that metallic networks with quasi-fractal structure provides a near-perfect practical realization of such an ideal electrode. We find that a leaf venation network, which possesses key characteristics of the optimal structure, indeed outperforms other networks. We further show that elements of hierarchal topology, rather than details of the branching geometry, are of primary importance in optimizing the networks, and demonstrate this experimentally on five model artificial hierarchical networks of varied levels of complexity. In addition to these structural effects, networks containing nanowires are shown to acquire transparency exceeding the geometric constraint due to the plasmonic refraction. Nature Publishing Group 2016-09-26 /pmc/articles/PMC5052667/ /pubmed/27667099 http://dx.doi.org/10.1038/ncomms12825 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Han, Bing Peng, Qiang Li, Ruopeng Rong, Qikun Ding, Yang Akinoglu, Eser Metin Wu, Xueyuan Wang, Xin Lu, Xubing Wang, Qianming Zhou, Guofu Liu, Jun-Ming Ren, Zhifeng Giersig, Michael Herczynski, Andrzej Kempa, Krzysztof Gao, Jinwei Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics |
title | Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics |
title_full | Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics |
title_fullStr | Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics |
title_full_unstemmed | Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics |
title_short | Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics |
title_sort | optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052667/ https://www.ncbi.nlm.nih.gov/pubmed/27667099 http://dx.doi.org/10.1038/ncomms12825 |
work_keys_str_mv | AT hanbing optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT pengqiang optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT liruopeng optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT rongqikun optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT dingyang optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT akinogluesermetin optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT wuxueyuan optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT wangxin optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT luxubing optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT wangqianming optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT zhouguofu optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT liujunming optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT renzhifeng optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT giersigmichael optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT herczynskiandrzej optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT kempakrzysztof optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics AT gaojinwei optimizationofhierarchicalstructureandnanoscaleenabledplasmonicrefractionforwindowelectrodesinphotovoltaics |