Cargando…
Real-time encoding and compression of neuronal spikes by metal-oxide memristors
Advanced brain-chip interfaces with numerous recording sites bear great potential for investigation of neuroprosthetic applications. The bottleneck towards achieving an efficient bio-electronic link is the real-time processing of neuronal signals, which imposes excessive requirements on bandwidth, e...
Autores principales: | Gupta, Isha, Serb, Alexantrou, Khiat, Ali, Zeitler, Ralf, Vassanelli, Stefano, Prodromakis, Themistoklis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052668/ https://www.ncbi.nlm.nih.gov/pubmed/27666698 http://dx.doi.org/10.1038/ncomms12805 |
Ejemplares similares
-
Seamlessly fused digital-analogue reconfigurable computing using memristors
por: Serb, Alexantrou, et al.
Publicado: (2018) -
Memristive synapses connect brain and silicon spiking neurons
por: Serb, Alexantrou, et al.
Publicado: (2020) -
Author Correction: Memristive synapses connect brain and silicon spiking neurons
por: Serb, Alexantrou, et al.
Publicado: (2020) -
Multibit memory operation of metal-oxide bi-layer memristors
por: Stathopoulos, Spyros, et al.
Publicado: (2017) -
Implementation of a spike-based perceptron learning rule using TiO(2−x) memristors
por: Mostafa, Hesham, et al.
Publicado: (2015)