Cargando…

Multi-omics analysis reveals regulators of the response to PDGF-BB treatment in pulmonary artery smooth muscle cells

BACKGROUND: Pulmonary arterial hypertension (PAH) is a lethal disease with pronounced narrowing of pulmonary vessels due to abnormal cell proliferation. The platelet-derived growth factor BB (PDGF-BB) is well known as a potent mitogen for smooth muscle cell proliferation. To better understand how th...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jidong, Cui, Xiaolei, Qian, Zhengjiang, Li, Yanjiao, Kang, Kang, Qu, Junle, Li, Li, Gou, Deming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053085/
https://www.ncbi.nlm.nih.gov/pubmed/27716141
http://dx.doi.org/10.1186/s12864-016-3122-3
Descripción
Sumario:BACKGROUND: Pulmonary arterial hypertension (PAH) is a lethal disease with pronounced narrowing of pulmonary vessels due to abnormal cell proliferation. The platelet-derived growth factor BB (PDGF-BB) is well known as a potent mitogen for smooth muscle cell proliferation. To better understand how this growth factor regulates pulmonary arterial smooth muscle cells (PASMCs) proliferation, we sought to characterize the response to PDGF-BB stimulation at system-wide levels, including the transcriptome and proteome. RESULTS: In this study, we identified 1611 mRNAs (transcriptome), 207 proteins (proteome) differentially expressed in response to PDGF-BB stimulation in PASMCs based on RNA-sequencing and isobaric tags for relative and absolute quantification (iTRAQ) assay. Transcription factor (TF)-target network analysis revealed that PDGF-BB regulated gene expression potentially via TFs including HIF1A, JUN, EST1, ETS1, SMAD1, FOS, SP1, STAT1, LEF1 and CEBPB. Among them, SMAD1-involved BMPR2/SMADs axis plays a significant role in PAH development. Interestingly, we observed that the expression of BMPR2 was decreased in both mRNA and protein level in response to PDGF-BB. Further study revealed that BMPR2 is the direct target of miR-376b that is up-regulated upon PDGF-BB treatment. Finally, EdU incorporation assay showed that miR-376b promoted proliferation of PASMCs. CONCLUSION: This integrated analysis of PDGF-BB-regulated transcriptome and proteome was performed for the first time in normal PASMCs, which revealed a crosstalk between PDGF signaling and BMPR2/SMADs axis. Further study demonstrated that PDGF-BB-induced miR-376b upregulation mediated the downregulation of BMPR2, which led to expression change of its downstream targets and promoted proliferation of PASMCs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-3122-3) contains supplementary material, which is available to authorized users.