Cargando…

The dual role of a yeast metacaspase: What doesn't kill you makes you stronger

Recent reports suggest that the yeast Saccharomyces cerevisiae caspase‐related metacaspase, Mca1, is required for cell‐autonomous cytoprotective functions that slow cellular aging. Because the Mca1 protease has previously been suggested to be responsible for programmed cell death (PCD) upon stress a...

Descripción completa

Detalles Bibliográficos
Autores principales: Hill, Sandra Malmgren, Nyström, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053244/
https://www.ncbi.nlm.nih.gov/pubmed/25677381
http://dx.doi.org/10.1002/bies.201400208
Descripción
Sumario:Recent reports suggest that the yeast Saccharomyces cerevisiae caspase‐related metacaspase, Mca1, is required for cell‐autonomous cytoprotective functions that slow cellular aging. Because the Mca1 protease has previously been suggested to be responsible for programmed cell death (PCD) upon stress and aging, these reports raise the question of how the opposing roles of Mca1 as a protector and executioner are regulated. One reconciling perspective could be that executioner activation may be restricted to situations where the death of part of the population would be beneficial, for example during colony growth or adaptation into specialized survival forms. Another possibility is that metacaspases primarily harbor beneficial functions and that the increased survival observed upon metacaspase removal is due to compensatory responses. Herein, we summarize data on the role of Mca1 in cell death and survival and approach the question of how a metacaspase involved in protein quality control may act as killer protein.