Cargando…
Bringing CLARITY to the human brain: visualization of Lewy pathology in three dimensions
AIMS: CLARITY is a novel technique which enables three‐dimensional visualization of immunostained tissue for the study of circuitry and spatial interactions between cells and molecules in the brain. In this study, we aimed to compare methodological differences in the application of CLARITY between r...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053282/ https://www.ncbi.nlm.nih.gov/pubmed/26526972 http://dx.doi.org/10.1111/nan.12293 |
_version_ | 1782458384639852544 |
---|---|
author | Liu, A. K. L. Hurry, M. E. D. Ng, O.T. W. DeFelice, J. Lai, H. M. Pearce, R. K. B. Wong, G. T‐C. Chang, R. C‐C. Gentleman, S. M. |
author_facet | Liu, A. K. L. Hurry, M. E. D. Ng, O.T. W. DeFelice, J. Lai, H. M. Pearce, R. K. B. Wong, G. T‐C. Chang, R. C‐C. Gentleman, S. M. |
author_sort | Liu, A. K. L. |
collection | PubMed |
description | AIMS: CLARITY is a novel technique which enables three‐dimensional visualization of immunostained tissue for the study of circuitry and spatial interactions between cells and molecules in the brain. In this study, we aimed to compare methodological differences in the application of CLARITY between rodent and large human post mortem brain samples. In addition, we aimed to investigate if this technique could be used to visualize Lewy pathology in a post mortem Parkinson's brain. METHODS: Rodent and human brain samples were clarified and immunostained using the passive version of the CLARITY technique. Samples were then immersed in different refractive index matching media before mounting and visualizing under a confocal microscope. RESULTS: We found that tissue clearing speed using passive CLARITY differs according to species (human vs. rodents), brain region and degree of fixation (fresh vs. formalin‐fixed tissues). Furthermore, there were advantages to using specific refractive index matching media. We have applied this technique and have successfully visualized Lewy body inclusions in three dimensions within the nucleus basalis of Meynert, and the spatial relationship between monoaminergic fibres and Lewy pathologies among nigrostriatal fibres in the midbrain without the need for physical serial sectioning of brain tissue. CONCLUSIONS: The effective use of CLARITY on large samples of human tissue opens up many potential avenues for detailed pathological and morphological studies. |
format | Online Article Text |
id | pubmed-5053282 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50532822016-10-19 Bringing CLARITY to the human brain: visualization of Lewy pathology in three dimensions Liu, A. K. L. Hurry, M. E. D. Ng, O.T. W. DeFelice, J. Lai, H. M. Pearce, R. K. B. Wong, G. T‐C. Chang, R. C‐C. Gentleman, S. M. Neuropathol Appl Neurobiol Original Articles AIMS: CLARITY is a novel technique which enables three‐dimensional visualization of immunostained tissue for the study of circuitry and spatial interactions between cells and molecules in the brain. In this study, we aimed to compare methodological differences in the application of CLARITY between rodent and large human post mortem brain samples. In addition, we aimed to investigate if this technique could be used to visualize Lewy pathology in a post mortem Parkinson's brain. METHODS: Rodent and human brain samples were clarified and immunostained using the passive version of the CLARITY technique. Samples were then immersed in different refractive index matching media before mounting and visualizing under a confocal microscope. RESULTS: We found that tissue clearing speed using passive CLARITY differs according to species (human vs. rodents), brain region and degree of fixation (fresh vs. formalin‐fixed tissues). Furthermore, there were advantages to using specific refractive index matching media. We have applied this technique and have successfully visualized Lewy body inclusions in three dimensions within the nucleus basalis of Meynert, and the spatial relationship between monoaminergic fibres and Lewy pathologies among nigrostriatal fibres in the midbrain without the need for physical serial sectioning of brain tissue. CONCLUSIONS: The effective use of CLARITY on large samples of human tissue opens up many potential avenues for detailed pathological and morphological studies. John Wiley and Sons Inc. 2015-12-07 2016-10 /pmc/articles/PMC5053282/ /pubmed/26526972 http://dx.doi.org/10.1111/nan.12293 Text en © 2015 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Liu, A. K. L. Hurry, M. E. D. Ng, O.T. W. DeFelice, J. Lai, H. M. Pearce, R. K. B. Wong, G. T‐C. Chang, R. C‐C. Gentleman, S. M. Bringing CLARITY to the human brain: visualization of Lewy pathology in three dimensions |
title | Bringing CLARITY to the human brain: visualization of Lewy pathology in three dimensions |
title_full | Bringing CLARITY to the human brain: visualization of Lewy pathology in three dimensions |
title_fullStr | Bringing CLARITY to the human brain: visualization of Lewy pathology in three dimensions |
title_full_unstemmed | Bringing CLARITY to the human brain: visualization of Lewy pathology in three dimensions |
title_short | Bringing CLARITY to the human brain: visualization of Lewy pathology in three dimensions |
title_sort | bringing clarity to the human brain: visualization of lewy pathology in three dimensions |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053282/ https://www.ncbi.nlm.nih.gov/pubmed/26526972 http://dx.doi.org/10.1111/nan.12293 |
work_keys_str_mv | AT liuakl bringingclaritytothehumanbrainvisualizationoflewypathologyinthreedimensions AT hurrymed bringingclaritytothehumanbrainvisualizationoflewypathologyinthreedimensions AT ngotw bringingclaritytothehumanbrainvisualizationoflewypathologyinthreedimensions AT defelicej bringingclaritytothehumanbrainvisualizationoflewypathologyinthreedimensions AT laihm bringingclaritytothehumanbrainvisualizationoflewypathologyinthreedimensions AT pearcerkb bringingclaritytothehumanbrainvisualizationoflewypathologyinthreedimensions AT wonggtc bringingclaritytothehumanbrainvisualizationoflewypathologyinthreedimensions AT changrcc bringingclaritytothehumanbrainvisualizationoflewypathologyinthreedimensions AT gentlemansm bringingclaritytothehumanbrainvisualizationoflewypathologyinthreedimensions |