Cargando…

Adaptation to size affects saccades with long but not short latencies

Maintained exposure to a specific stimulus property—such as size, color, or motion—induces perceptual adaptation aftereffects, usually in the opposite direction to that of the adaptor. Here we studied how adaptation to size affects perceived position and visually guided action (saccadic eye movement...

Descripción completa

Detalles Bibliográficos
Autores principales: Zimmermann, Eckart, Morrone, Maria Concetta, Burr, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053361/
https://www.ncbi.nlm.nih.gov/pubmed/27139583
http://dx.doi.org/10.1167/16.7.2
Descripción
Sumario:Maintained exposure to a specific stimulus property—such as size, color, or motion—induces perceptual adaptation aftereffects, usually in the opposite direction to that of the adaptor. Here we studied how adaptation to size affects perceived position and visually guided action (saccadic eye movements) to that position. Subjects saccaded to the border of a diamond-shaped object after adaptation to a smaller diamond shape. For saccades in the normal latency range, amplitudes decreased, consistent with saccading to a larger object. Short-latency saccades, however, tended to be affected less by the adaptation, suggesting that they were only partly triggered by a signal representing the illusory target position. We also tested size perception after adaptation, followed by a mask stimulus at the probe location after various delays. Similar size adaptation magnitudes were found for all probe-mask delays. In agreement with earlier studies, these results suggest that the duration of the saccade latency period determines the reference frame that codes the probe location.