Cargando…
Bounds for the Z-spectral radius of nonnegative tensors
In this paper, we have proposed some new upper bounds for the largest Z-eigenvalue of an irreducible weakly symmetric and nonnegative tensor, which improve the known upper bounds obtained in Chang et al. (Linear Algebra Appl 438:4166–4182, 2013), Song and Qi (SIAM J Matrix Anal Appl 34:1581–1595, 20...
Autores principales: | He, Jun, Liu, Yan-Min, Ke, Hua, Tian, Jun-Kang, Li, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053970/ https://www.ncbi.nlm.nih.gov/pubmed/27777863 http://dx.doi.org/10.1186/s40064-016-3338-3 |
Ejemplares similares
-
A new bound for the spectral radius of nonnegative tensors
por: Li, Suhua, et al.
Publicado: (2017) -
An upper bound for the Z-spectral radius of adjacency tensors
por: Wu, Zhi-Yong, et al.
Publicado: (2018) -
Some new sharp bounds for the spectral radius of a nonnegative matrix and its application
por: He, Jun, et al.
Publicado: (2017) -
Bounds for the M-spectral radius of a fourth-order partially symmetric tensor
por: Li, Suhua, et al.
Publicado: (2018) -
A new S-type upper bound for the largest singular value of nonnegative rectangular tensors
por: Zhao, Jianxing, et al.
Publicado: (2017)