Cargando…
Topological Properties of Protein-Protein and Metabolic Interaction Networks of Drosophila melanogaster
The underlying principle governing the natural phenomena of life is one of the critical issues receiving due importance in recent years. A key feature of the scale-free architecture is the vitality of the most connected nodes (hubs). The major objective of this article was to analyze the protein-pro...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054029/ https://www.ncbi.nlm.nih.gov/pubmed/16970548 http://dx.doi.org/10.1016/S1672-0229(06)60020-X |
Sumario: | The underlying principle governing the natural phenomena of life is one of the critical issues receiving due importance in recent years. A key feature of the scale-free architecture is the vitality of the most connected nodes (hubs). The major objective of this article was to analyze the protein-protein and metabolic interaction networks of Drosophila melanogaster by considering the architectural patterns and the consequence of removal of hubs on the topological parameter of the two interaction systems. Analysis showed that both interaction networks follow a scale-free model, establishing the fact that most real world networks, from varied situations, conform to the small world pattern. The average path length showed a two-fold and a three-fold increase (changing from 9.42 to 20.93 and from 5.29 to 17.75, respectively) for the protein-protein and metabolic interaction networks, respectively, due to the deletion of hubs. On the contrary, the arbitrary elimination of nodes did not show any remarkable disparity in the topological parameter of the protein-protein and metabolic interaction networks (average path length: 9.42±0.02 and 5.27±0.01, respectively). This aberrant behavior for the two cases underscores the significance of the most linked nodes to the natural topology of the networks. |
---|