Cargando…
Improve Survival Prediction Using Principal Components of Gene Expression Data
The purpose of many microarray studies is to find the association between gene expression and sample characteristics such as treatment type or sample phenotype. There has been a surge of efforts developing different methods for delineating the association. Aside from the high dimensionality of micro...
Autores principales: | Shen, Yi-Jing, Huang, Shu-Guang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054035/ https://www.ncbi.nlm.nih.gov/pubmed/16970550 http://dx.doi.org/10.1016/S1672-0229(06)60022-3 |
Ejemplares similares
-
Linkage analysis using principal components of gene expression data
por: Atkinson, Elizabeth J, et al.
Publicado: (2007) -
Mining gene expression data by interpreting principal components
por: Roden, Joseph C, et al.
Publicado: (2006) -
Gene Expression Data Classification With Kernel
Principal Component Analysis
por: Liu, Zhenqiu, et al.
Publicado: (2005) -
Principal component tests: applied to temporal gene expression data
por: Zhang, Wensheng, et al.
Publicado: (2009) -
Linkage and association analyses of principal components in expression data
por: Hinrichs, Anthony L, et al.
Publicado: (2007)