Cargando…
Reduction of Isoagglutinin in Intravenous Immunoglobulin (IVIG) Using Blood Group A- and B-Specific Immunoaffinity Chromatography: Industry-Scale Assessment
BACKGROUND: Hemolysis, a rare but potentially serious complication of intravenous immunoglobulin (IVIG) therapy, is associated with the presence of antibodies to blood groups A and B (isoagglutinins) in the IVIG product. An immunoaffinity chromatography (IAC) step in the production process could dec...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054059/ https://www.ncbi.nlm.nih.gov/pubmed/27646589 http://dx.doi.org/10.1007/s40259-016-0192-3 |
Sumario: | BACKGROUND: Hemolysis, a rare but potentially serious complication of intravenous immunoglobulin (IVIG) therapy, is associated with the presence of antibodies to blood groups A and B (isoagglutinins) in the IVIG product. An immunoaffinity chromatography (IAC) step in the production process could decrease isoagglutinin levels in IVIG. OBJECTIVES: Our objectives were to compare isoagglutinin levels in a large number of IVIG (Privigen(®)) batches produced with or without IAC and to assess the feasibility of the production process with an IAC step on an industrial scale. METHODS: The IAC column comprised a blend of anti-A and anti-B resins formed by coupling synthetic blood group antigens (A/B-trisaccharides) to a base bead matrix, and was introduced towards the end of the industrial-scale IVIG manufacturing process. Isoagglutinin levels in IVIG were determined by anti-A and anti-B hemagglutinin direct and indirect methods according to the European Pharmacopoeia (Ph. Eur.) and an isoagglutinin flow cytometry assay. IVIG product quality was assessed with respect to the retention of immunoglobulin G (IgG) subclasses, specific antibodies, and removal of IgM using standardized procedures. RESULTS: The IAC step reduced isoagglutinins in IVIG by two to three titer steps compared with lots produced without IAC. The median anti-A and anti-B titers with IAC were 1:8 and 1:4, respectively, when measured by the Ph. Eur. direct method, and 1:2 and <1, respectively, when measured by the Ph. Eur. indirect method. The isoagglutinin flow cytometry assay showed an 87–90 % reduction in isoagglutinins in post-IAC versus pre-IAC fractions. IAC alone reduced anti-A and anti-B of the IgMs isotype by 92.5–97.8 % and 95.4–99.2 %, respectively. Other product quality characteristics were similar with and without IAC. CONCLUSIONS: IAC is an effective method for reducing isoagglutinin levels in IVIG, and it is feasible on an industrial scale. |
---|