Cargando…

Reduction of Isoagglutinin in Intravenous Immunoglobulin (IVIG) Using Blood Group A- and B-Specific Immunoaffinity Chromatography: Industry-Scale Assessment

BACKGROUND: Hemolysis, a rare but potentially serious complication of intravenous immunoglobulin (IVIG) therapy, is associated with the presence of antibodies to blood groups A and B (isoagglutinins) in the IVIG product. An immunoaffinity chromatography (IAC) step in the production process could dec...

Descripción completa

Detalles Bibliográficos
Autores principales: Gerber, Simon, Gaida, Annette, Spiegl, Nicole, Wymann, Sandra, Antunes, Adriano Marques, Menyawi, Ibrahim El, Zurbriggen, Brigitte, Hubsch, Alphonse, Imboden, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054059/
https://www.ncbi.nlm.nih.gov/pubmed/27646589
http://dx.doi.org/10.1007/s40259-016-0192-3
Descripción
Sumario:BACKGROUND: Hemolysis, a rare but potentially serious complication of intravenous immunoglobulin (IVIG) therapy, is associated with the presence of antibodies to blood groups A and B (isoagglutinins) in the IVIG product. An immunoaffinity chromatography (IAC) step in the production process could decrease isoagglutinin levels in IVIG. OBJECTIVES: Our objectives were to compare isoagglutinin levels in a large number of IVIG (Privigen(®)) batches produced with or without IAC and to assess the feasibility of the production process with an IAC step on an industrial scale. METHODS: The IAC column comprised a blend of anti-A and anti-B resins formed by coupling synthetic blood group antigens (A/B-trisaccharides) to a base bead matrix, and was introduced towards the end of the industrial-scale IVIG manufacturing process. Isoagglutinin levels in IVIG were determined by anti-A and anti-B hemagglutinin direct and indirect methods according to the European Pharmacopoeia (Ph. Eur.) and an isoagglutinin flow cytometry assay. IVIG product quality was assessed with respect to the retention of immunoglobulin G (IgG) subclasses, specific antibodies, and removal of IgM using standardized procedures. RESULTS: The IAC step reduced isoagglutinins in IVIG by two to three titer steps compared with lots produced without IAC. The median anti-A and anti-B titers with IAC were 1:8 and 1:4, respectively, when measured by the Ph. Eur. direct method, and 1:2 and <1, respectively, when measured by the Ph. Eur. indirect method. The isoagglutinin flow cytometry assay showed an 87–90 % reduction in isoagglutinins in post-IAC versus pre-IAC fractions. IAC alone reduced anti-A and anti-B of the IgMs isotype by 92.5–97.8 % and 95.4–99.2 %, respectively. Other product quality characteristics were similar with and without IAC. CONCLUSIONS: IAC is an effective method for reducing isoagglutinin levels in IVIG, and it is feasible on an industrial scale.