Cargando…
Gene Expression Data Classification Using Consensus Independent Component Analysis
We propose a new method for tumor classification from gene expression data, which mainly contains three steps. Firstly, the original DNA microarray gene expression data are modeled by independent component analysis (ICA). Secondly, the most discriminant eigenassays extracted by ICA are selected by t...
Autores principales: | Zheng, Chun-Hou, Huang, De-Shuang, Kong, Xiang-Zhen, Zhao, Xing-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054104/ https://www.ncbi.nlm.nih.gov/pubmed/18973863 http://dx.doi.org/10.1016/S1672-0229(08)60022-4 |
Ejemplares similares
-
Consensus clustering and functional interpretation of gene-expression data
por: Swift, Stephen, et al.
Publicado: (2004) -
Application of independent component analysis to microarrays
por: Lee, Su-In, et al.
Publicado: (2003) -
A method for independent component graph analysis of resting‐state fMRI
por: Ribeiro de Paula, Demetrius, et al.
Publicado: (2017) -
Independent component analysis based gene co-expression network inference (ICAnet) to decipher functional modules for better single-cell clustering and batch integration
por: Wang, Weixu, et al.
Publicado: (2021) -
DIA-MS2pep: a library-free framework for comprehensive peptide identification from data-independent acquisition data
por: Hou, Junjie, et al.
Publicado: (2022)