Cargando…

MOF: An R Function to Detect Outlier Microarray

We developed an R function named “microarray outlier filter” (MOF) to assist in the identification of failed arrays. In sorting a group of similar arrays by the likelihood of failure, two statistical indices were employed: the correlation coefficient and the percentage of outlier spots. MOF can be u...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Song, Guo, Xiang, Hu, Hai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054131/
https://www.ncbi.nlm.nih.gov/pubmed/19329069
http://dx.doi.org/10.1016/S1672-0229(09)60006-1
_version_ 1782458533687590912
author Yang, Song
Guo, Xiang
Hu, Hai
author_facet Yang, Song
Guo, Xiang
Hu, Hai
author_sort Yang, Song
collection PubMed
description We developed an R function named “microarray outlier filter” (MOF) to assist in the identification of failed arrays. In sorting a group of similar arrays by the likelihood of failure, two statistical indices were employed: the correlation coefficient and the percentage of outlier spots. MOF can be used to monitor the quality of microarray data for both trouble shooting, and to eliminate bad datasets from downstream analysis. The function is freely avaliable at http://www.wriwindber.org/applications/mof/.
format Online
Article
Text
id pubmed-5054131
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-50541312016-10-14 MOF: An R Function to Detect Outlier Microarray Yang, Song Guo, Xiang Hu, Hai Genomics Proteomics Bioinformatics Application Note We developed an R function named “microarray outlier filter” (MOF) to assist in the identification of failed arrays. In sorting a group of similar arrays by the likelihood of failure, two statistical indices were employed: the correlation coefficient and the percentage of outlier spots. MOF can be used to monitor the quality of microarray data for both trouble shooting, and to eliminate bad datasets from downstream analysis. The function is freely avaliable at http://www.wriwindber.org/applications/mof/. Elsevier 2008 2009-03-27 /pmc/articles/PMC5054131/ /pubmed/19329069 http://dx.doi.org/10.1016/S1672-0229(09)60006-1 Text en © 2008 Beijing Institute of Genomics http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
spellingShingle Application Note
Yang, Song
Guo, Xiang
Hu, Hai
MOF: An R Function to Detect Outlier Microarray
title MOF: An R Function to Detect Outlier Microarray
title_full MOF: An R Function to Detect Outlier Microarray
title_fullStr MOF: An R Function to Detect Outlier Microarray
title_full_unstemmed MOF: An R Function to Detect Outlier Microarray
title_short MOF: An R Function to Detect Outlier Microarray
title_sort mof: an r function to detect outlier microarray
topic Application Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054131/
https://www.ncbi.nlm.nih.gov/pubmed/19329069
http://dx.doi.org/10.1016/S1672-0229(09)60006-1
work_keys_str_mv AT yangsong mofanrfunctiontodetectoutliermicroarray
AT guoxiang mofanrfunctiontodetectoutliermicroarray
AT huhai mofanrfunctiontodetectoutliermicroarray