Cargando…

Testing multi-scale processing in the auditory system

Natural sounds contain information on multiple timescales, so the auditory system must analyze and integrate acoustic information on those different scales to extract behaviorally relevant information. However, this multi-scale process in the auditory system is not widely investigated in the literat...

Descripción completa

Detalles Bibliográficos
Autores principales: Teng, Xiangbin, Tian, Xing, Poeppel, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054370/
https://www.ncbi.nlm.nih.gov/pubmed/27713546
http://dx.doi.org/10.1038/srep34390
Descripción
Sumario:Natural sounds contain information on multiple timescales, so the auditory system must analyze and integrate acoustic information on those different scales to extract behaviorally relevant information. However, this multi-scale process in the auditory system is not widely investigated in the literature, and existing models of temporal integration are mainly built upon detection or recognition tasks on a single timescale. Here we use a paradigm requiring processing on relatively ‘local’ and ‘global’ scales and provide evidence suggesting that the auditory system extracts fine-detail acoustic information using short temporal windows and uses long temporal windows to abstract global acoustic patterns. Behavioral task performance that requires processing fine-detail information does not improve with longer stimulus length, contrary to predictions of previous temporal integration models such as the multiple-looks and the spectro-temporal excitation pattern model. Moreover, the perceptual construction of putatively ‘unitary’ auditory events requires more than hundreds of milliseconds. These findings support the hypothesis of a dual-scale processing likely implemented in the auditory cortex.