Cargando…
Polar Superhelices in Ferroelectric Chiral Nanosprings
Topological objects of nontrivial spin or dipolar field textures, such as skyrmions, merons, and vortices, interacting with applied external fields in ferroic materials are of great scientific interest as an intriguing playground of unique physical phenomena and novel technological paradigms. The qu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054384/ https://www.ncbi.nlm.nih.gov/pubmed/27713540 http://dx.doi.org/10.1038/srep35199 |
_version_ | 1782458587245707264 |
---|---|
author | Shimada, Takahiro Lich, Le Van Nagano, Koyo Wang, Jian-Shan Wang, Jie Kitamura, Takayuki |
author_facet | Shimada, Takahiro Lich, Le Van Nagano, Koyo Wang, Jian-Shan Wang, Jie Kitamura, Takayuki |
author_sort | Shimada, Takahiro |
collection | PubMed |
description | Topological objects of nontrivial spin or dipolar field textures, such as skyrmions, merons, and vortices, interacting with applied external fields in ferroic materials are of great scientific interest as an intriguing playground of unique physical phenomena and novel technological paradigms. The quest for new topological configurations of such swirling field textures has primarily been done for magnets with Dzyaloshinskii-Moriya interactions, while the absence of such intrinsic chiral interactions among electric dipoles left ferroelectrics aside in this quest. Here, we demonstrate that a helical polarization coiled into another helix, namely a polar superhelix, can be extrinsically stabilized in ferroelectric nanosprings. The interplay between dipolar interactions confined in the chiral geometry and the complex strain field of mixed bending and twisting induces the superhelical configuration of electric polarization. The geometrical structure of the polar superhelix gives rise to electric chiralities at two different length scales and the coexistence of three order parameters, i.e., polarization, toroidization, and hypertoroidization, both of which can be manipulated by homogeneous electric and/or mechanical fields. Our work therefore provides a new geometrical configuration of swirling dipolar fields, which offers the possibility of multiple order-parameters, and electromechanically controllable dipolar chiralities and associated electro-optical responses. |
format | Online Article Text |
id | pubmed-5054384 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-50543842016-10-19 Polar Superhelices in Ferroelectric Chiral Nanosprings Shimada, Takahiro Lich, Le Van Nagano, Koyo Wang, Jian-Shan Wang, Jie Kitamura, Takayuki Sci Rep Article Topological objects of nontrivial spin or dipolar field textures, such as skyrmions, merons, and vortices, interacting with applied external fields in ferroic materials are of great scientific interest as an intriguing playground of unique physical phenomena and novel technological paradigms. The quest for new topological configurations of such swirling field textures has primarily been done for magnets with Dzyaloshinskii-Moriya interactions, while the absence of such intrinsic chiral interactions among electric dipoles left ferroelectrics aside in this quest. Here, we demonstrate that a helical polarization coiled into another helix, namely a polar superhelix, can be extrinsically stabilized in ferroelectric nanosprings. The interplay between dipolar interactions confined in the chiral geometry and the complex strain field of mixed bending and twisting induces the superhelical configuration of electric polarization. The geometrical structure of the polar superhelix gives rise to electric chiralities at two different length scales and the coexistence of three order parameters, i.e., polarization, toroidization, and hypertoroidization, both of which can be manipulated by homogeneous electric and/or mechanical fields. Our work therefore provides a new geometrical configuration of swirling dipolar fields, which offers the possibility of multiple order-parameters, and electromechanically controllable dipolar chiralities and associated electro-optical responses. Nature Publishing Group 2016-10-07 /pmc/articles/PMC5054384/ /pubmed/27713540 http://dx.doi.org/10.1038/srep35199 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Shimada, Takahiro Lich, Le Van Nagano, Koyo Wang, Jian-Shan Wang, Jie Kitamura, Takayuki Polar Superhelices in Ferroelectric Chiral Nanosprings |
title | Polar Superhelices in Ferroelectric Chiral Nanosprings |
title_full | Polar Superhelices in Ferroelectric Chiral Nanosprings |
title_fullStr | Polar Superhelices in Ferroelectric Chiral Nanosprings |
title_full_unstemmed | Polar Superhelices in Ferroelectric Chiral Nanosprings |
title_short | Polar Superhelices in Ferroelectric Chiral Nanosprings |
title_sort | polar superhelices in ferroelectric chiral nanosprings |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054384/ https://www.ncbi.nlm.nih.gov/pubmed/27713540 http://dx.doi.org/10.1038/srep35199 |
work_keys_str_mv | AT shimadatakahiro polarsuperhelicesinferroelectricchiralnanosprings AT lichlevan polarsuperhelicesinferroelectricchiralnanosprings AT naganokoyo polarsuperhelicesinferroelectricchiralnanosprings AT wangjianshan polarsuperhelicesinferroelectricchiralnanosprings AT wangjie polarsuperhelicesinferroelectricchiralnanosprings AT kitamuratakayuki polarsuperhelicesinferroelectricchiralnanosprings |