Cargando…
Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends
BACKGROUND: The purpose of this study was to compare the frequency-dependent viscoelastic properties of human and bovine cartilage. METHODS: Full-depth cartilage specimens were extracted from bovine and human femoral heads. Using dynamic mechanical analysis, the viscoelastic properties of eight bovi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054593/ https://www.ncbi.nlm.nih.gov/pubmed/27716169 http://dx.doi.org/10.1186/s12891-016-1279-1 |
_version_ | 1782458630300237824 |
---|---|
author | Temple, Duncan K. Cederlund, Anna A. Lawless, Bernard M. Aspden, Richard M. Espino, Daniel M. |
author_facet | Temple, Duncan K. Cederlund, Anna A. Lawless, Bernard M. Aspden, Richard M. Espino, Daniel M. |
author_sort | Temple, Duncan K. |
collection | PubMed |
description | BACKGROUND: The purpose of this study was to compare the frequency-dependent viscoelastic properties of human and bovine cartilage. METHODS: Full-depth cartilage specimens were extracted from bovine and human femoral heads. Using dynamic mechanical analysis, the viscoelastic properties of eight bovine and six human specimens were measured over the frequency range 1 Hz to 88 Hz. Significant differences between bovine and human cartilage viscoelastic properties were assessed using a Mann–Whitney test (p < 0.05). RESULTS: Throughout the range of frequencies tested and for both species, the storage modulus was greater than the loss modulus and both were frequency-dependent. The storage and loss moduli of all human and bovine cartilage specimens presented a logarithmic relationship with respect to frequency. The mean human storage modulus ranged from 31.9 MPa to 43.3 MPa, while the mean bovine storage modulus ranged from 54.0 MPa to 80.5 MPa; bovine storage moduli were 1.7 to 1.9 times greater than the human modulus. Similarly, the loss modulus of bovine cartilage was 2.0 to 2.1 times greater than human. The mean human loss modulus ranged from 5.3 MPa to 8.5 MPa while bovine moduli ranged from 10.6 MPa to 18.1 MPa. CONCLUSION: Frequency-dependent viscoelastic trends of bovine articular cartilage were consistent with those of human articular cartilage; this includes a similar frequency dependency and high-frequency plateau. Bovine cartilage was, however, ‘stiffer’ than human by a factor of approximately 2. With these provisos, bovine articular cartilage may be a suitable dynamic model for human articular cartilage. |
format | Online Article Text |
id | pubmed-5054593 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-50545932016-10-19 Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends Temple, Duncan K. Cederlund, Anna A. Lawless, Bernard M. Aspden, Richard M. Espino, Daniel M. BMC Musculoskelet Disord Research Article BACKGROUND: The purpose of this study was to compare the frequency-dependent viscoelastic properties of human and bovine cartilage. METHODS: Full-depth cartilage specimens were extracted from bovine and human femoral heads. Using dynamic mechanical analysis, the viscoelastic properties of eight bovine and six human specimens were measured over the frequency range 1 Hz to 88 Hz. Significant differences between bovine and human cartilage viscoelastic properties were assessed using a Mann–Whitney test (p < 0.05). RESULTS: Throughout the range of frequencies tested and for both species, the storage modulus was greater than the loss modulus and both were frequency-dependent. The storage and loss moduli of all human and bovine cartilage specimens presented a logarithmic relationship with respect to frequency. The mean human storage modulus ranged from 31.9 MPa to 43.3 MPa, while the mean bovine storage modulus ranged from 54.0 MPa to 80.5 MPa; bovine storage moduli were 1.7 to 1.9 times greater than the human modulus. Similarly, the loss modulus of bovine cartilage was 2.0 to 2.1 times greater than human. The mean human loss modulus ranged from 5.3 MPa to 8.5 MPa while bovine moduli ranged from 10.6 MPa to 18.1 MPa. CONCLUSION: Frequency-dependent viscoelastic trends of bovine articular cartilage were consistent with those of human articular cartilage; this includes a similar frequency dependency and high-frequency plateau. Bovine cartilage was, however, ‘stiffer’ than human by a factor of approximately 2. With these provisos, bovine articular cartilage may be a suitable dynamic model for human articular cartilage. BioMed Central 2016-10-06 /pmc/articles/PMC5054593/ /pubmed/27716169 http://dx.doi.org/10.1186/s12891-016-1279-1 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Temple, Duncan K. Cederlund, Anna A. Lawless, Bernard M. Aspden, Richard M. Espino, Daniel M. Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends |
title | Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends |
title_full | Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends |
title_fullStr | Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends |
title_full_unstemmed | Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends |
title_short | Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends |
title_sort | viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054593/ https://www.ncbi.nlm.nih.gov/pubmed/27716169 http://dx.doi.org/10.1186/s12891-016-1279-1 |
work_keys_str_mv | AT templeduncank viscoelasticpropertiesofhumanandbovinearticularcartilageacomparisonoffrequencydependenttrends AT cederlundannaa viscoelasticpropertiesofhumanandbovinearticularcartilageacomparisonoffrequencydependenttrends AT lawlessbernardm viscoelasticpropertiesofhumanandbovinearticularcartilageacomparisonoffrequencydependenttrends AT aspdenrichardm viscoelasticpropertiesofhumanandbovinearticularcartilageacomparisonoffrequencydependenttrends AT espinodanielm viscoelasticpropertiesofhumanandbovinearticularcartilageacomparisonoffrequencydependenttrends |