Cargando…

The Pendulum Model for Genome Compositional Dynamics: from the Four Nucleotides to the Twenty Amino Acids

The genetic code serves as one of the natural links for life’s two conceptual frameworks—the informational and operational tracks—bridging the nucleotide sequence of DNA and RNA to the amino acid sequence of protein and thus its structure and function. On the informational track, DNA and its four bu...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhang, Yu, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054704/
https://www.ncbi.nlm.nih.gov/pubmed/23084772
http://dx.doi.org/10.1016/j.gpb.2012.08.002
_version_ 1782458652454551552
author Zhang, Zhang
Yu, Jun
author_facet Zhang, Zhang
Yu, Jun
author_sort Zhang, Zhang
collection PubMed
description The genetic code serves as one of the natural links for life’s two conceptual frameworks—the informational and operational tracks—bridging the nucleotide sequence of DNA and RNA to the amino acid sequence of protein and thus its structure and function. On the informational track, DNA and its four building blocks have four basic variables: order, length, GC and purine contents; the latter two exhibit unique characteristics in prokaryotic genomes where protein-coding sequences dominate. Bridging the two tracks, tRNAs and their aminoacyl tRNA synthases that interpret each codon—nucleotide triplet, together with ribosomes, form a complex machinery that translates genetic information encoded on the messenger RNAs into proteins. On the operational track, proteins are selected in a context of cellular and organismal functions constantly. The principle of such a functional selection is to minimize the damage caused by sequence alteration in a seemingly random fashion at the nucleotide level and its function-altering consequence at the protein level; the principle also suggests that there must be complex yet sophisticated mechanisms to protect molecular interactions and cellular processes for cells and organisms from the damage in addition to both immediate or short-term eliminations and long-term selections. The two-century study of selection at species and population levels has been leading a way to understand rules of inheritance and evolution at molecular levels along the informational track, while ribogenomics, epigenomics and other operationally-defined omics (such as the metabolite-centric metabolomics) have been ushering biologists into the new millennium along the operational track.
format Online
Article
Text
id pubmed-5054704
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-50547042016-10-14 The Pendulum Model for Genome Compositional Dynamics: from the Four Nucleotides to the Twenty Amino Acids Zhang, Zhang Yu, Jun Genomics Proteomics Bioinformatics Essay The genetic code serves as one of the natural links for life’s two conceptual frameworks—the informational and operational tracks—bridging the nucleotide sequence of DNA and RNA to the amino acid sequence of protein and thus its structure and function. On the informational track, DNA and its four building blocks have four basic variables: order, length, GC and purine contents; the latter two exhibit unique characteristics in prokaryotic genomes where protein-coding sequences dominate. Bridging the two tracks, tRNAs and their aminoacyl tRNA synthases that interpret each codon—nucleotide triplet, together with ribosomes, form a complex machinery that translates genetic information encoded on the messenger RNAs into proteins. On the operational track, proteins are selected in a context of cellular and organismal functions constantly. The principle of such a functional selection is to minimize the damage caused by sequence alteration in a seemingly random fashion at the nucleotide level and its function-altering consequence at the protein level; the principle also suggests that there must be complex yet sophisticated mechanisms to protect molecular interactions and cellular processes for cells and organisms from the damage in addition to both immediate or short-term eliminations and long-term selections. The two-century study of selection at species and population levels has been leading a way to understand rules of inheritance and evolution at molecular levels along the informational track, while ribogenomics, epigenomics and other operationally-defined omics (such as the metabolite-centric metabolomics) have been ushering biologists into the new millennium along the operational track. Elsevier 2012-08 2012-08-10 /pmc/articles/PMC5054704/ /pubmed/23084772 http://dx.doi.org/10.1016/j.gpb.2012.08.002 Text en © 2012 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Published by Elsevier Ltd and Science Press. All rights reserved. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
spellingShingle Essay
Zhang, Zhang
Yu, Jun
The Pendulum Model for Genome Compositional Dynamics: from the Four Nucleotides to the Twenty Amino Acids
title The Pendulum Model for Genome Compositional Dynamics: from the Four Nucleotides to the Twenty Amino Acids
title_full The Pendulum Model for Genome Compositional Dynamics: from the Four Nucleotides to the Twenty Amino Acids
title_fullStr The Pendulum Model for Genome Compositional Dynamics: from the Four Nucleotides to the Twenty Amino Acids
title_full_unstemmed The Pendulum Model for Genome Compositional Dynamics: from the Four Nucleotides to the Twenty Amino Acids
title_short The Pendulum Model for Genome Compositional Dynamics: from the Four Nucleotides to the Twenty Amino Acids
title_sort pendulum model for genome compositional dynamics: from the four nucleotides to the twenty amino acids
topic Essay
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054704/
https://www.ncbi.nlm.nih.gov/pubmed/23084772
http://dx.doi.org/10.1016/j.gpb.2012.08.002
work_keys_str_mv AT zhangzhang thependulummodelforgenomecompositionaldynamicsfromthefournucleotidestothetwentyaminoacids
AT yujun thependulummodelforgenomecompositionaldynamicsfromthefournucleotidestothetwentyaminoacids
AT zhangzhang pendulummodelforgenomecompositionaldynamicsfromthefournucleotidestothetwentyaminoacids
AT yujun pendulummodelforgenomecompositionaldynamicsfromthefournucleotidestothetwentyaminoacids