Cargando…

A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta‐analysis

Missing outcome data are a common threat to the validity of the results from randomised controlled trials (RCTs), which, if not analysed appropriately, can lead to misleading treatment effect estimates. Studies with missing outcome data also threaten the validity of any meta‐analysis that includes t...

Descripción completa

Detalles Bibliográficos
Autores principales: Turner, N. L., Dias, S., Ades, A. E., Welton, N. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054891/
https://www.ncbi.nlm.nih.gov/pubmed/25809313
http://dx.doi.org/10.1002/sim.6475
_version_ 1782458680481939456
author Turner, N. L.
Dias, S.
Ades, A. E.
Welton, N. J.
author_facet Turner, N. L.
Dias, S.
Ades, A. E.
Welton, N. J.
author_sort Turner, N. L.
collection PubMed
description Missing outcome data are a common threat to the validity of the results from randomised controlled trials (RCTs), which, if not analysed appropriately, can lead to misleading treatment effect estimates. Studies with missing outcome data also threaten the validity of any meta‐analysis that includes them. A conceptually simple Bayesian framework is proposed, to account for uncertainty due to missing binary outcome data in meta‐analysis. A pattern‐mixture model is fitted, which allows the incorporation of prior information on a parameter describing the missingness mechanism. We describe several alternative parameterisations, with the simplest being a prior on the probability of an event in the missing individuals. We describe a series of structural assumptions that can be made concerning the missingness parameters. We use some artificial data scenarios to demonstrate the ability of the model to produce a bias‐adjusted estimate of treatment effect that accounts for uncertainty. A meta‐analysis of haloperidol versus placebo for schizophrenia is used to illustrate the model. We end with a discussion of elicitation of priors, issues with poor reporting and potential extensions of the framework. Our framework allows one to make the best use of evidence produced from RCTs with missing outcome data in a meta‐analysis, accounts for any uncertainty induced by missing data and fits easily into a wider evidence synthesis framework for medical decision making. © 2015 The Authors. Statistics in MedicinePublished by John Wiley & Sons Ltd.
format Online
Article
Text
id pubmed-5054891
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-50548912016-10-19 A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta‐analysis Turner, N. L. Dias, S. Ades, A. E. Welton, N. J. Stat Med Research Articles Missing outcome data are a common threat to the validity of the results from randomised controlled trials (RCTs), which, if not analysed appropriately, can lead to misleading treatment effect estimates. Studies with missing outcome data also threaten the validity of any meta‐analysis that includes them. A conceptually simple Bayesian framework is proposed, to account for uncertainty due to missing binary outcome data in meta‐analysis. A pattern‐mixture model is fitted, which allows the incorporation of prior information on a parameter describing the missingness mechanism. We describe several alternative parameterisations, with the simplest being a prior on the probability of an event in the missing individuals. We describe a series of structural assumptions that can be made concerning the missingness parameters. We use some artificial data scenarios to demonstrate the ability of the model to produce a bias‐adjusted estimate of treatment effect that accounts for uncertainty. A meta‐analysis of haloperidol versus placebo for schizophrenia is used to illustrate the model. We end with a discussion of elicitation of priors, issues with poor reporting and potential extensions of the framework. Our framework allows one to make the best use of evidence produced from RCTs with missing outcome data in a meta‐analysis, accounts for any uncertainty induced by missing data and fits easily into a wider evidence synthesis framework for medical decision making. © 2015 The Authors. Statistics in MedicinePublished by John Wiley & Sons Ltd. John Wiley and Sons Inc. 2015-03-24 2015-05-30 /pmc/articles/PMC5054891/ /pubmed/25809313 http://dx.doi.org/10.1002/sim.6475 Text en © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/3.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles
Turner, N. L.
Dias, S.
Ades, A. E.
Welton, N. J.
A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta‐analysis
title A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta‐analysis
title_full A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta‐analysis
title_fullStr A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta‐analysis
title_full_unstemmed A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta‐analysis
title_short A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta‐analysis
title_sort bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta‐analysis
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054891/
https://www.ncbi.nlm.nih.gov/pubmed/25809313
http://dx.doi.org/10.1002/sim.6475
work_keys_str_mv AT turnernl abayesianframeworktoaccountforuncertaintyduetomissingbinaryoutcomedatainpairwisemetaanalysis
AT diass abayesianframeworktoaccountforuncertaintyduetomissingbinaryoutcomedatainpairwisemetaanalysis
AT adesae abayesianframeworktoaccountforuncertaintyduetomissingbinaryoutcomedatainpairwisemetaanalysis
AT weltonnj abayesianframeworktoaccountforuncertaintyduetomissingbinaryoutcomedatainpairwisemetaanalysis
AT turnernl bayesianframeworktoaccountforuncertaintyduetomissingbinaryoutcomedatainpairwisemetaanalysis
AT diass bayesianframeworktoaccountforuncertaintyduetomissingbinaryoutcomedatainpairwisemetaanalysis
AT adesae bayesianframeworktoaccountforuncertaintyduetomissingbinaryoutcomedatainpairwisemetaanalysis
AT weltonnj bayesianframeworktoaccountforuncertaintyduetomissingbinaryoutcomedatainpairwisemetaanalysis