Cargando…
A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta‐analysis
Missing outcome data are a common threat to the validity of the results from randomised controlled trials (RCTs), which, if not analysed appropriately, can lead to misleading treatment effect estimates. Studies with missing outcome data also threaten the validity of any meta‐analysis that includes t...
Autores principales: | Turner, N. L., Dias, S., Ades, A. E., Welton, N. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054891/ https://www.ncbi.nlm.nih.gov/pubmed/25809313 http://dx.doi.org/10.1002/sim.6475 |
Ejemplares similares
-
Allowing for uncertainty due to missing continuous outcome data in pairwise and network meta‐analysis
por: Mavridis, Dimitris, et al.
Publicado: (2015) -
Evidence Synthesis for Decision Making 2: A Generalized Linear Modeling Framework for Pairwise and Network Meta-analysis of Randomized Controlled Trials
por: Dias, Sofia, et al.
Publicado: (2013) -
An empirical comparison of Bayesian modelling strategies for missing binary outcome data in network meta-analysis
por: Spineli, Loukia M.
Publicado: (2019) -
National population mapping from sparse survey data: A hierarchical Bayesian modeling framework to account for uncertainty
por: Leasure, Douglas R., et al.
Publicado: (2020) -
Quantifying uncertainty in annual runoff due to missing data
por: See, Craig R., et al.
Publicado: (2020)