Cargando…

Functional Metabolomics Describes the Yeast Biosynthetic Regulome

Genome-metabolism interactions enable cell growth. To probe the extent of these interactions and delineate their functional contributions, we quantified the Saccharomyces amino acid metabolome and its response to systematic gene deletion. Over one-third of coding genes, in particular those important...

Descripción completa

Detalles Bibliográficos
Autores principales: Mülleder, Michael, Calvani, Enrica, Alam, Mohammad Tauqeer, Wang, Richard Kangda, Eckerstorfer, Florian, Zelezniak, Aleksej, Ralser, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055083/
https://www.ncbi.nlm.nih.gov/pubmed/27693354
http://dx.doi.org/10.1016/j.cell.2016.09.007
_version_ 1782458717002792960
author Mülleder, Michael
Calvani, Enrica
Alam, Mohammad Tauqeer
Wang, Richard Kangda
Eckerstorfer, Florian
Zelezniak, Aleksej
Ralser, Markus
author_facet Mülleder, Michael
Calvani, Enrica
Alam, Mohammad Tauqeer
Wang, Richard Kangda
Eckerstorfer, Florian
Zelezniak, Aleksej
Ralser, Markus
author_sort Mülleder, Michael
collection PubMed
description Genome-metabolism interactions enable cell growth. To probe the extent of these interactions and delineate their functional contributions, we quantified the Saccharomyces amino acid metabolome and its response to systematic gene deletion. Over one-third of coding genes, in particular those important for chromatin dynamics, translation, and transport, contribute to biosynthetic metabolism. Specific amino acid signatures characterize genes of similar function. This enabled us to exploit functional metabolomics to connect metabolic regulators to their effectors, as exemplified by TORC1, whose inhibition in exponentially growing cells is shown to match an interruption in endomembrane transport. Providing orthogonal information compared to physical and genetic interaction networks, metabolomic signatures cluster more than half of the so far uncharacterized yeast genes and provide functional annotation for them. A major part of coding genes is therefore participating in gene-metabolism interactions that expose the metabolism regulatory network and enable access to an underexplored space in gene function.
format Online
Article
Text
id pubmed-5055083
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-50550832016-10-12 Functional Metabolomics Describes the Yeast Biosynthetic Regulome Mülleder, Michael Calvani, Enrica Alam, Mohammad Tauqeer Wang, Richard Kangda Eckerstorfer, Florian Zelezniak, Aleksej Ralser, Markus Cell Resource Genome-metabolism interactions enable cell growth. To probe the extent of these interactions and delineate their functional contributions, we quantified the Saccharomyces amino acid metabolome and its response to systematic gene deletion. Over one-third of coding genes, in particular those important for chromatin dynamics, translation, and transport, contribute to biosynthetic metabolism. Specific amino acid signatures characterize genes of similar function. This enabled us to exploit functional metabolomics to connect metabolic regulators to their effectors, as exemplified by TORC1, whose inhibition in exponentially growing cells is shown to match an interruption in endomembrane transport. Providing orthogonal information compared to physical and genetic interaction networks, metabolomic signatures cluster more than half of the so far uncharacterized yeast genes and provide functional annotation for them. A major part of coding genes is therefore participating in gene-metabolism interactions that expose the metabolism regulatory network and enable access to an underexplored space in gene function. Cell Press 2016-10-06 /pmc/articles/PMC5055083/ /pubmed/27693354 http://dx.doi.org/10.1016/j.cell.2016.09.007 Text en © 2016 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Resource
Mülleder, Michael
Calvani, Enrica
Alam, Mohammad Tauqeer
Wang, Richard Kangda
Eckerstorfer, Florian
Zelezniak, Aleksej
Ralser, Markus
Functional Metabolomics Describes the Yeast Biosynthetic Regulome
title Functional Metabolomics Describes the Yeast Biosynthetic Regulome
title_full Functional Metabolomics Describes the Yeast Biosynthetic Regulome
title_fullStr Functional Metabolomics Describes the Yeast Biosynthetic Regulome
title_full_unstemmed Functional Metabolomics Describes the Yeast Biosynthetic Regulome
title_short Functional Metabolomics Describes the Yeast Biosynthetic Regulome
title_sort functional metabolomics describes the yeast biosynthetic regulome
topic Resource
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055083/
https://www.ncbi.nlm.nih.gov/pubmed/27693354
http://dx.doi.org/10.1016/j.cell.2016.09.007
work_keys_str_mv AT mulledermichael functionalmetabolomicsdescribestheyeastbiosyntheticregulome
AT calvanienrica functionalmetabolomicsdescribestheyeastbiosyntheticregulome
AT alammohammadtauqeer functionalmetabolomicsdescribestheyeastbiosyntheticregulome
AT wangrichardkangda functionalmetabolomicsdescribestheyeastbiosyntheticregulome
AT eckerstorferflorian functionalmetabolomicsdescribestheyeastbiosyntheticregulome
AT zelezniakaleksej functionalmetabolomicsdescribestheyeastbiosyntheticregulome
AT ralsermarkus functionalmetabolomicsdescribestheyeastbiosyntheticregulome