Cargando…

Rapid and efficient generation of neural progenitors from adult bone marrow stromal cells by hypoxic preconditioning

BACKGROUND: Bone marrow stromal cells (BMSCs) are attractive as a source of neural progenitors for ex vivo generation of neurons and glia. Limited numbers of this subpopulation, however, hinder translation into autologous cell-based therapy. Here, we demonstrate rapid and efficient conditioning with...

Descripción completa

Detalles Bibliográficos
Autores principales: Mung, Kwan-Long, Tsui, Yat-Ping, Tai, Evelyn Wing-Yin, Chan, Ying-Shing, Shum, Daisy Kwok-Yan, Shea, Graham Ka-Hon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055711/
https://www.ncbi.nlm.nih.gov/pubmed/27717376
http://dx.doi.org/10.1186/s13287-016-0409-x
Descripción
Sumario:BACKGROUND: Bone marrow stromal cells (BMSCs) are attractive as a source of neural progenitors for ex vivo generation of neurons and glia. Limited numbers of this subpopulation, however, hinder translation into autologous cell-based therapy. Here, we demonstrate rapid and efficient conditioning with hypoxia to enrich for these neural progenitor cells prior to further expansion in neurosphere culture. METHOD: Adherent cultures of BMSCs (rat/human) were subjected to 1 % oxygen for 24 h and then subcultured as neurospheres with epidermal growth factor (EGF) and basic fibroblast growth factor supplementation. Neurospheres and cell progeny were monitored immunocytochemically for marker expression. To generate Schwann cell-like cells, neurospheres were plated out and exposed to gliogenic medium. The resulting cells were co-cultured with purified dorsal root ganglia (rat) neurons and then tested for commitment to the Schwann cell fate. Fate-committed Schwann cells were subjected to in vitro myelination assay. RESULTS: Transient hypoxic treatment increased the size and number of neurospheres generated from both rat and human BMSCs. This effect was EGF-dependent and attenuated with the EGF receptor inhibitor erlotinib. Hypoxia did not affect the capacity of neurospheres to generate neuron- or glia-like precursors. Human Schwann cell-like cells generated from hypoxia-treated BMSCs demonstrated expression of S100β /p75 and capacity for myelination in vitro. CONCLUSION: Enhancing the yield of neural progenitor cells with hypoxic preconditioning of BMSCs in vitro but without inherent risks of genetic manipulation provides a platform for upscaling production of neural cell derivatives for clinical application in cell-based therapy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-016-0409-x) contains supplementary material, which is available to authorized users.