Cargando…
Two-Layer Tight Frame Sparsifying Model for Compressed Sensing Magnetic Resonance Imaging
Compressed sensing magnetic resonance imaging (CSMRI) employs image sparsity to reconstruct MR images from incoherently undersampled K-space data. Existing CSMRI approaches have exploited analysis transform, synthesis dictionary, and their variants to trigger image sparsity. Nevertheless, the accura...
Autores principales: | Wang, Shanshan, Liu, Jianbo, Peng, Xi, Dong, Pei, Liu, Qiegen, Liang, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056000/ https://www.ncbi.nlm.nih.gov/pubmed/27747226 http://dx.doi.org/10.1155/2016/2860643 |
Ejemplares similares
-
Balanced Sparse Model for Tight Frames in Compressed Sensing Magnetic Resonance Imaging
por: Liu, Yunsong, et al.
Publicado: (2015) -
Multidimensional Compressed Sensing MRI Using Tensor Decomposition-Based Sparsifying Transform
por: Yu, Yeyang, et al.
Publicado: (2014) -
Undersampled MR Image Reconstruction with Data-Driven Tight Frame
por: Liu, Jianbo, et al.
Publicado: (2015) -
On cheap entropy-sparsified regression learning
por: Horenko, Illia, et al.
Publicado: (2022) -
A Weighted Two-Level Bregman Method with Dictionary Updating for Nonconvex MR Image Reconstruction
por: Liu, Qiegen, et al.
Publicado: (2014)