Cargando…

Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm

This paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA) in X-ray angiograms. Since the single-scale Gabor filters (SSG) are governed by three parameters, the optimal selection of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Cervantes-Sanchez, Fernando, Cruz-Aceves, Ivan, Hernandez-Aguirre, Arturo, Aviña-Cervantes, Juan Gabriel, Solorio-Meza, Sergio, Ornelas-Rodriguez, Manuel, Torres-Cisneros, Miguel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056001/
https://www.ncbi.nlm.nih.gov/pubmed/27738422
http://dx.doi.org/10.1155/2016/2420962
_version_ 1782458836800503808
author Cervantes-Sanchez, Fernando
Cruz-Aceves, Ivan
Hernandez-Aguirre, Arturo
Aviña-Cervantes, Juan Gabriel
Solorio-Meza, Sergio
Ornelas-Rodriguez, Manuel
Torres-Cisneros, Miguel
author_facet Cervantes-Sanchez, Fernando
Cruz-Aceves, Ivan
Hernandez-Aguirre, Arturo
Aviña-Cervantes, Juan Gabriel
Solorio-Meza, Sergio
Ornelas-Rodriguez, Manuel
Torres-Cisneros, Miguel
author_sort Cervantes-Sanchez, Fernando
collection PubMed
description This paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA) in X-ray angiograms. Since the single-scale Gabor filters (SSG) are governed by three parameters, the optimal selection of the SSG parameters is highly desirable in order to maximize the detection performance of coronary arteries while reducing the computational time. To obtain the best set of parameters for the SSG, the area (A (z)) under the receiver operating characteristic curve is used as fitness function. Moreover, to classify vessel and nonvessel pixels from the Gabor filter response, the interclass variance thresholding method has been adopted. The experimental results using the proposed method obtained the highest detection rate with A (z) = 0.9502 over a training set of 40 images and A (z) = 0.9583 with a test set of 40 images. In addition, the experimental results of vessel segmentation provided an accuracy of 0.944 with the test set of angiograms.
format Online
Article
Text
id pubmed-5056001
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-50560012016-10-13 Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm Cervantes-Sanchez, Fernando Cruz-Aceves, Ivan Hernandez-Aguirre, Arturo Aviña-Cervantes, Juan Gabriel Solorio-Meza, Sergio Ornelas-Rodriguez, Manuel Torres-Cisneros, Miguel Comput Intell Neurosci Research Article This paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA) in X-ray angiograms. Since the single-scale Gabor filters (SSG) are governed by three parameters, the optimal selection of the SSG parameters is highly desirable in order to maximize the detection performance of coronary arteries while reducing the computational time. To obtain the best set of parameters for the SSG, the area (A (z)) under the receiver operating characteristic curve is used as fitness function. Moreover, to classify vessel and nonvessel pixels from the Gabor filter response, the interclass variance thresholding method has been adopted. The experimental results using the proposed method obtained the highest detection rate with A (z) = 0.9502 over a training set of 40 images and A (z) = 0.9583 with a test set of 40 images. In addition, the experimental results of vessel segmentation provided an accuracy of 0.944 with the test set of angiograms. Hindawi Publishing Corporation 2016 2016-09-25 /pmc/articles/PMC5056001/ /pubmed/27738422 http://dx.doi.org/10.1155/2016/2420962 Text en Copyright © 2016 Fernando Cervantes-Sanchez et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Cervantes-Sanchez, Fernando
Cruz-Aceves, Ivan
Hernandez-Aguirre, Arturo
Aviña-Cervantes, Juan Gabriel
Solorio-Meza, Sergio
Ornelas-Rodriguez, Manuel
Torres-Cisneros, Miguel
Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm
title Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm
title_full Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm
title_fullStr Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm
title_full_unstemmed Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm
title_short Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm
title_sort segmentation of coronary angiograms using gabor filters and boltzmann univariate marginal distribution algorithm
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056001/
https://www.ncbi.nlm.nih.gov/pubmed/27738422
http://dx.doi.org/10.1155/2016/2420962
work_keys_str_mv AT cervantessanchezfernando segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm
AT cruzacevesivan segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm
AT hernandezaguirrearturo segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm
AT avinacervantesjuangabriel segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm
AT soloriomezasergio segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm
AT ornelasrodriguezmanuel segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm
AT torrescisnerosmiguel segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm