Cargando…
Exact low-temperature series expansion for the partition function of the zero-field Ising model on the infinite square lattice
In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. W...
Autores principales: | Siudem, Grzegorz, Fronczak, Agata, Fronczak, Piotr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056370/ https://www.ncbi.nlm.nih.gov/pubmed/27721435 http://dx.doi.org/10.1038/srep33523 |
Ejemplares similares
-
The Ising square lattice and temperature-dependent solutions to the Liouville equation
por: Zaganescu, M
Publicado: (1993) -
Partition function zeros of an Ising spin glass
por: Damgaard, P.H., et al.
Publicado: (1994) -
How transfer flights shape the structure of the airline network
por: Ryczkowski, Tomasz, et al.
Publicado: (2017) -
Scientific success from the perspective of the strength of weak ties
por: Fronczak, Agata, et al.
Publicado: (2022) -
A Veritable Zoology of Successive Phase Transitions in the Asymmetric q-Voter Model on Multiplex Networks
por: Chmiel, Anna, et al.
Publicado: (2020)