Cargando…
Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
In an increasingly data-rich world the need for developing computing systems that cannot only process, but ideally also interpret big data is becoming continuously more pressing. Brain-inspired concepts have shown great promise towards addressing this need. Here we demonstrate unsupervised learning...
Autores principales: | Serb, Alexander, Bill, Johannes, Khiat, Ali, Berdan, Radu, Legenstein, Robert, Prodromakis, Themis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056401/ https://www.ncbi.nlm.nih.gov/pubmed/27681181 http://dx.doi.org/10.1038/ncomms12611 |
Ejemplares similares
-
Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning
por: Covi, Erika, et al.
Publicado: (2016) -
Emulating short-term synaptic dynamics with memristive devices
por: Berdan, Radu, et al.
Publicado: (2016) -
Palimpsest memories stored in memristive synapses
por: Giotis, Christos, et al.
Publicado: (2022) -
An Electrical Characterisation Methodology for Benchmarking Memristive Device Technologies
por: Stathopoulos, Spyros, et al.
Publicado: (2019) -
Memristive synapses connect brain and silicon spiking neurons
por: Serb, Alexantrou, et al.
Publicado: (2020)