Cargando…

Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure

Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological...

Descripción completa

Detalles Bibliográficos
Autores principales: Kjaergaard, M., Nichele, F., Suominen, H. J., Nowak, M. P., Wimmer, M., Akhmerov, A. R., Folk, J. A., Flensberg, K., Shabani, J., Palmstrøm, C. J., Marcus, C. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056412/
https://www.ncbi.nlm.nih.gov/pubmed/27682268
http://dx.doi.org/10.1038/ncomms12841
_version_ 1782458893373276160
author Kjaergaard, M.
Nichele, F.
Suominen, H. J.
Nowak, M. P.
Wimmer, M.
Akhmerov, A. R.
Folk, J. A.
Flensberg, K.
Shabani, J.
Palmstrøm, C. J.
Marcus, C. M.
author_facet Kjaergaard, M.
Nichele, F.
Suominen, H. J.
Nowak, M. P.
Wimmer, M.
Akhmerov, A. R.
Folk, J. A.
Flensberg, K.
Shabani, J.
Palmstrøm, C. J.
Marcus, C. M.
author_sort Kjaergaard, M.
collection PubMed
description Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological matter is by coupling a 2D electron gas with strong spin–orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e(2)/h, consistent with theory. The hard-gap semiconductor–superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems.
format Online
Article
Text
id pubmed-5056412
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50564122016-10-24 Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure Kjaergaard, M. Nichele, F. Suominen, H. J. Nowak, M. P. Wimmer, M. Akhmerov, A. R. Folk, J. A. Flensberg, K. Shabani, J. Palmstrøm, C. J. Marcus, C. M. Nat Commun Article Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological matter is by coupling a 2D electron gas with strong spin–orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e(2)/h, consistent with theory. The hard-gap semiconductor–superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems. Nature Publishing Group 2016-09-29 /pmc/articles/PMC5056412/ /pubmed/27682268 http://dx.doi.org/10.1038/ncomms12841 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Kjaergaard, M.
Nichele, F.
Suominen, H. J.
Nowak, M. P.
Wimmer, M.
Akhmerov, A. R.
Folk, J. A.
Flensberg, K.
Shabani, J.
Palmstrøm, C. J.
Marcus, C. M.
Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure
title Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure
title_full Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure
title_fullStr Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure
title_full_unstemmed Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure
title_short Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure
title_sort quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056412/
https://www.ncbi.nlm.nih.gov/pubmed/27682268
http://dx.doi.org/10.1038/ncomms12841
work_keys_str_mv AT kjaergaardm quantizedconductancedoublingandhardgapinatwodimensionalsemiconductorsuperconductorheterostructure
AT nichelef quantizedconductancedoublingandhardgapinatwodimensionalsemiconductorsuperconductorheterostructure
AT suominenhj quantizedconductancedoublingandhardgapinatwodimensionalsemiconductorsuperconductorheterostructure
AT nowakmp quantizedconductancedoublingandhardgapinatwodimensionalsemiconductorsuperconductorheterostructure
AT wimmerm quantizedconductancedoublingandhardgapinatwodimensionalsemiconductorsuperconductorheterostructure
AT akhmerovar quantizedconductancedoublingandhardgapinatwodimensionalsemiconductorsuperconductorheterostructure
AT folkja quantizedconductancedoublingandhardgapinatwodimensionalsemiconductorsuperconductorheterostructure
AT flensbergk quantizedconductancedoublingandhardgapinatwodimensionalsemiconductorsuperconductorheterostructure
AT shabanij quantizedconductancedoublingandhardgapinatwodimensionalsemiconductorsuperconductorheterostructure
AT palmstrømcj quantizedconductancedoublingandhardgapinatwodimensionalsemiconductorsuperconductorheterostructure
AT marcuscm quantizedconductancedoublingandhardgapinatwodimensionalsemiconductorsuperconductorheterostructure