Cargando…

Quantum decoherence dynamics of divacancy spins in silicon carbide

Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H–SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in...

Descripción completa

Detalles Bibliográficos
Autores principales: Seo, Hosung, Falk, Abram L., Klimov, Paul V., Miao, Kevin C., Galli, Giulia, Awschalom, David D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056425/
https://www.ncbi.nlm.nih.gov/pubmed/27679936
http://dx.doi.org/10.1038/ncomms12935
_version_ 1782458896287268864
author Seo, Hosung
Falk, Abram L.
Klimov, Paul V.
Miao, Kevin C.
Galli, Giulia
Awschalom, David D.
author_facet Seo, Hosung
Falk, Abram L.
Klimov, Paul V.
Miao, Kevin C.
Galli, Giulia
Awschalom, David D.
author_sort Seo, Hosung
collection PubMed
description Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H–SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30 mT and above), the (29)Si and (13)C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.
format Online
Article
Text
id pubmed-5056425
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50564252016-10-24 Quantum decoherence dynamics of divacancy spins in silicon carbide Seo, Hosung Falk, Abram L. Klimov, Paul V. Miao, Kevin C. Galli, Giulia Awschalom, David D. Nat Commun Article Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H–SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30 mT and above), the (29)Si and (13)C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state. Nature Publishing Group 2016-09-29 /pmc/articles/PMC5056425/ /pubmed/27679936 http://dx.doi.org/10.1038/ncomms12935 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Seo, Hosung
Falk, Abram L.
Klimov, Paul V.
Miao, Kevin C.
Galli, Giulia
Awschalom, David D.
Quantum decoherence dynamics of divacancy spins in silicon carbide
title Quantum decoherence dynamics of divacancy spins in silicon carbide
title_full Quantum decoherence dynamics of divacancy spins in silicon carbide
title_fullStr Quantum decoherence dynamics of divacancy spins in silicon carbide
title_full_unstemmed Quantum decoherence dynamics of divacancy spins in silicon carbide
title_short Quantum decoherence dynamics of divacancy spins in silicon carbide
title_sort quantum decoherence dynamics of divacancy spins in silicon carbide
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056425/
https://www.ncbi.nlm.nih.gov/pubmed/27679936
http://dx.doi.org/10.1038/ncomms12935
work_keys_str_mv AT seohosung quantumdecoherencedynamicsofdivacancyspinsinsiliconcarbide
AT falkabraml quantumdecoherencedynamicsofdivacancyspinsinsiliconcarbide
AT klimovpaulv quantumdecoherencedynamicsofdivacancyspinsinsiliconcarbide
AT miaokevinc quantumdecoherencedynamicsofdivacancyspinsinsiliconcarbide
AT galligiulia quantumdecoherencedynamicsofdivacancyspinsinsiliconcarbide
AT awschalomdavidd quantumdecoherencedynamicsofdivacancyspinsinsiliconcarbide