Cargando…
Incipient ferroelectricity of water molecules confined to nano-channels of beryl
Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole–dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecula...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056440/ https://www.ncbi.nlm.nih.gov/pubmed/27687693 http://dx.doi.org/10.1038/ncomms12842 |
_version_ | 1782458899383713792 |
---|---|
author | Gorshunov, B. P. Torgashev, V. I. Zhukova, E. S. Thomas, V. G. Belyanchikov, M. A. Kadlec, C. Kadlec, F. Savinov, M. Ostapchuk, T. Petzelt, J. Prokleška, J. Tomas, P. V. Pestrjakov, E. V. Fursenko, D. A. Shakurov, G. S. Prokhorov, A. S. Gorelik, V. S. Kadyrov, L. S. Uskov, V. V. Kremer, R. K. Dressel, M. |
author_facet | Gorshunov, B. P. Torgashev, V. I. Zhukova, E. S. Thomas, V. G. Belyanchikov, M. A. Kadlec, C. Kadlec, F. Savinov, M. Ostapchuk, T. Petzelt, J. Prokleška, J. Tomas, P. V. Pestrjakov, E. V. Fursenko, D. A. Shakurov, G. S. Prokhorov, A. S. Gorelik, V. S. Kadyrov, L. S. Uskov, V. V. Kremer, R. K. Dressel, M. |
author_sort | Gorshunov, B. P. |
collection | PubMed |
description | Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole–dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H(2)O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole–dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie–Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices. |
format | Online Article Text |
id | pubmed-5056440 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-50564402016-10-24 Incipient ferroelectricity of water molecules confined to nano-channels of beryl Gorshunov, B. P. Torgashev, V. I. Zhukova, E. S. Thomas, V. G. Belyanchikov, M. A. Kadlec, C. Kadlec, F. Savinov, M. Ostapchuk, T. Petzelt, J. Prokleška, J. Tomas, P. V. Pestrjakov, E. V. Fursenko, D. A. Shakurov, G. S. Prokhorov, A. S. Gorelik, V. S. Kadyrov, L. S. Uskov, V. V. Kremer, R. K. Dressel, M. Nat Commun Article Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole–dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H(2)O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole–dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie–Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices. Nature Publishing Group 2016-09-30 /pmc/articles/PMC5056440/ /pubmed/27687693 http://dx.doi.org/10.1038/ncomms12842 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Gorshunov, B. P. Torgashev, V. I. Zhukova, E. S. Thomas, V. G. Belyanchikov, M. A. Kadlec, C. Kadlec, F. Savinov, M. Ostapchuk, T. Petzelt, J. Prokleška, J. Tomas, P. V. Pestrjakov, E. V. Fursenko, D. A. Shakurov, G. S. Prokhorov, A. S. Gorelik, V. S. Kadyrov, L. S. Uskov, V. V. Kremer, R. K. Dressel, M. Incipient ferroelectricity of water molecules confined to nano-channels of beryl |
title | Incipient ferroelectricity of water molecules confined to nano-channels of beryl |
title_full | Incipient ferroelectricity of water molecules confined to nano-channels of beryl |
title_fullStr | Incipient ferroelectricity of water molecules confined to nano-channels of beryl |
title_full_unstemmed | Incipient ferroelectricity of water molecules confined to nano-channels of beryl |
title_short | Incipient ferroelectricity of water molecules confined to nano-channels of beryl |
title_sort | incipient ferroelectricity of water molecules confined to nano-channels of beryl |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056440/ https://www.ncbi.nlm.nih.gov/pubmed/27687693 http://dx.doi.org/10.1038/ncomms12842 |
work_keys_str_mv | AT gorshunovbp incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT torgashevvi incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT zhukovaes incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT thomasvg incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT belyanchikovma incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT kadlecc incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT kadlecf incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT savinovm incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT ostapchukt incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT petzeltj incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT prokleskaj incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT tomaspv incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT pestrjakovev incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT fursenkoda incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT shakurovgs incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT prokhorovas incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT gorelikvs incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT kadyrovls incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT uskovvv incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT kremerrk incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl AT dresselm incipientferroelectricityofwatermoleculesconfinedtonanochannelsofberyl |