Cargando…
Cell-Surface Phenol Soluble Modulins Regulate Staphylococcus aureus Colony Spreading
Staphylococcus aureus produces phenol-soluble modulins (PSMs), which are amphipathic small peptides with lytic activity against mammalian cells. We previously reported that PSMα1–4 stimulate S. aureus colony spreading, the phenomenon of S. aureus colony expansion on the surface of soft agar plates,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056675/ https://www.ncbi.nlm.nih.gov/pubmed/27723838 http://dx.doi.org/10.1371/journal.pone.0164523 |
Sumario: | Staphylococcus aureus produces phenol-soluble modulins (PSMs), which are amphipathic small peptides with lytic activity against mammalian cells. We previously reported that PSMα1–4 stimulate S. aureus colony spreading, the phenomenon of S. aureus colony expansion on the surface of soft agar plates, whereas δ-toxin (Hld, PSMγ) inhibits colony-spreading activity. In this study, we revealed the underlying mechanism of the opposing effects of PSMα1–4 and δ-toxin in S. aureus colony spreading. PSMα1–4 and δ-toxin are abundant on the S. aureus cell surface, and account for 18% and 8.5% of the total amount of PSMα1–4 and δ-toxin, respectively, in S. aureus overnight cultures. Knockout of PSMα1–4 did not affect the amount of cell surface δ-toxin. In contrast, knockout of δ-toxin increased the amount of cell surface PSMα1–4, and decreased the amount of culture supernatant PSMα1–4. The δ-toxin inhibited PSMα3 and PSMα2 binding to the S. aureus cell surface in vitro. A double knockout strain of PSMα1–4 and δ-toxin exhibited decreased colony spreading compared with the parent strain. Expression of cell surface PSMα1–4, but not culture supernatant PSMα1–4, restored the colony-spreading activity of the PSMα1-4/δ-toxin double knockout strain. Expression of δ-toxin on the cell surface or in the culture supernatant did not restore the colony-spreading activity of the PSMα1-4/δ-toxin double knockout strain. These findings suggest that cell surface PSMα1–4 promote S. aureus colony spreading, whereas δ-toxin suppresses colony-spreading activity by inhibiting PSMα1–4 binding to the S. aureus cell surface. |
---|