Cargando…

Automated small‐scale protein purification and analysis for accelerated development of protein therapeutics

Small‐scale protein purification presents opportunities for accelerated process development of biotherapeutic molecules. Miniaturization of purification conditions reduces time and allows for parallel processing of samples, thus offering increased statistical significance and greater breadth of vari...

Descripción completa

Detalles Bibliográficos
Autores principales: LeSaout, Xavier, Costioli, Matteo, Jordan, Lynn, Lambert, Jeremy, Beighley, Ross, Provencher, Laurel, Gerwe, Brian, McGuire, Kevin, Verlinden, Nico, Barry, Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5057337/
https://www.ncbi.nlm.nih.gov/pubmed/27774045
http://dx.doi.org/10.1002/elsc.201400252
Descripción
Sumario:Small‐scale protein purification presents opportunities for accelerated process development of biotherapeutic molecules. Miniaturization of purification conditions reduces time and allows for parallel processing of samples, thus offering increased statistical significance and greater breadth of variables. The ability of the miniaturized platform to be predictive of larger scale purification schemes is of critical importance. The PerkinElmer JANUS BioTx Pro and Pro‐Plus workstations were developed as intuitive, flexible, and automated devices capable of performing parallel small‐scale analytical protein purification. Preprogrammed methods automate a variety of commercially available ion exchange and affinity chromatography solutions, including miniaturized chromatography columns, resin‐packed pipette tips, and resin‐filled microtiter vacuum filtration plates. Here, we present a comparison of microscale chromatography versus standard fast protein LC (FPLC) methods for process optimization. In this study, we evaluated the capabilities of the JANUS BioTx Pro‐Plus robotic platform for miniaturized chromatographic purification of proteins with the GE ӒKTA Express system. We were able to demonstrate predictive analysis similar to that of larger scale purification platforms, while offering advantages in speed and number of samples processed. This approach is predictive of scale‐up conditions, resulting in shorter biotherapeutic development cycles and less consumed material than traditional FPLC methods, thus reducing time‐to‐market from discovery to manufacturing.