Cargando…
Assessing pretreatment reactor scaling through empirical analysis
BACKGROUND: Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pret...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5057393/ https://www.ncbi.nlm.nih.gov/pubmed/27766117 http://dx.doi.org/10.1186/s13068-016-0620-0 |
_version_ | 1782459058490441728 |
---|---|
author | Lischeske, James J. Crawford, Nathan C. Kuhn, Erik Nagle, Nicholas J. Schell, Daniel J. Tucker, Melvin P. McMillan, James D. Wolfrum, Edward J. |
author_facet | Lischeske, James J. Crawford, Nathan C. Kuhn, Erik Nagle, Nicholas J. Schell, Daniel J. Tucker, Melvin P. McMillan, James D. Wolfrum, Edward J. |
author_sort | Lischeske, James J. |
collection | PubMed |
description | BACKGROUND: Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/days continuous reactor. The reactor systems examined were an automated solvent extractor (ASE), steam explosion reactor (SER), ZipperClave(®)Reactor (ZCR), and large continuous horizontal screw reactor (LHR). To our knowledge, this is the first such study performed on pretreatment reactors across a range of reaction conditions and at different reactor scales. RESULTS: The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. The maximum total sugar yields for the ASE and LHR were [Formula: see text] , while [Formula: see text] was the optimum observed in the ZipperClave. CONCLUSIONS: The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems. Additionally, using a severity factor approach to optimization was found to be inadequate compared to a multivariate optimization method. Finally, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of mechanical disruption during pretreatment to improvement of enzymatic digestibility. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-016-0620-0) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5057393 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-50573932016-10-20 Assessing pretreatment reactor scaling through empirical analysis Lischeske, James J. Crawford, Nathan C. Kuhn, Erik Nagle, Nicholas J. Schell, Daniel J. Tucker, Melvin P. McMillan, James D. Wolfrum, Edward J. Biotechnol Biofuels Research BACKGROUND: Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/days continuous reactor. The reactor systems examined were an automated solvent extractor (ASE), steam explosion reactor (SER), ZipperClave(®)Reactor (ZCR), and large continuous horizontal screw reactor (LHR). To our knowledge, this is the first such study performed on pretreatment reactors across a range of reaction conditions and at different reactor scales. RESULTS: The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. The maximum total sugar yields for the ASE and LHR were [Formula: see text] , while [Formula: see text] was the optimum observed in the ZipperClave. CONCLUSIONS: The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems. Additionally, using a severity factor approach to optimization was found to be inadequate compared to a multivariate optimization method. Finally, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of mechanical disruption during pretreatment to improvement of enzymatic digestibility. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-016-0620-0) contains supplementary material, which is available to authorized users. BioMed Central 2016-10-10 /pmc/articles/PMC5057393/ /pubmed/27766117 http://dx.doi.org/10.1186/s13068-016-0620-0 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Lischeske, James J. Crawford, Nathan C. Kuhn, Erik Nagle, Nicholas J. Schell, Daniel J. Tucker, Melvin P. McMillan, James D. Wolfrum, Edward J. Assessing pretreatment reactor scaling through empirical analysis |
title | Assessing pretreatment reactor scaling through empirical analysis |
title_full | Assessing pretreatment reactor scaling through empirical analysis |
title_fullStr | Assessing pretreatment reactor scaling through empirical analysis |
title_full_unstemmed | Assessing pretreatment reactor scaling through empirical analysis |
title_short | Assessing pretreatment reactor scaling through empirical analysis |
title_sort | assessing pretreatment reactor scaling through empirical analysis |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5057393/ https://www.ncbi.nlm.nih.gov/pubmed/27766117 http://dx.doi.org/10.1186/s13068-016-0620-0 |
work_keys_str_mv | AT lischeskejamesj assessingpretreatmentreactorscalingthroughempiricalanalysis AT crawfordnathanc assessingpretreatmentreactorscalingthroughempiricalanalysis AT kuhnerik assessingpretreatmentreactorscalingthroughempiricalanalysis AT naglenicholasj assessingpretreatmentreactorscalingthroughempiricalanalysis AT schelldanielj assessingpretreatmentreactorscalingthroughempiricalanalysis AT tuckermelvinp assessingpretreatmentreactorscalingthroughempiricalanalysis AT mcmillanjamesd assessingpretreatmentreactorscalingthroughempiricalanalysis AT wolfrumedwardj assessingpretreatmentreactorscalingthroughempiricalanalysis |