Cargando…

Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces

We demonstrate a template-assisted colloidal self-assembly approach for magnetic metasurfaces on macroscopic areas. The choice of anisotropic colloidal particle geometry, assembly pattern and metallic film is based on rational design criteria, taking advantage of mirror-charge effects for gold nanor...

Descripción completa

Detalles Bibliográficos
Autores principales: Mayer, Martin, Tebbe, Moritz, Kuttner, Christian, Schnepf, Max J., König, Tobias A. F., Fery, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058348/
https://www.ncbi.nlm.nih.gov/pubmed/27411967
http://dx.doi.org/10.1039/c6fd00013d
_version_ 1782459228297887744
author Mayer, Martin
Tebbe, Moritz
Kuttner, Christian
Schnepf, Max J.
König, Tobias A. F.
Fery, Andreas
author_facet Mayer, Martin
Tebbe, Moritz
Kuttner, Christian
Schnepf, Max J.
König, Tobias A. F.
Fery, Andreas
author_sort Mayer, Martin
collection PubMed
description We demonstrate a template-assisted colloidal self-assembly approach for magnetic metasurfaces on macroscopic areas. The choice of anisotropic colloidal particle geometry, assembly pattern and metallic film is based on rational design criteria, taking advantage of mirror-charge effects for gold nanorods placed on gold film. Monodisperse gold nanorods prepared utilizing wet-chemistry are arranged with high precision on wrinkled templates to form linear array-type assemblies and subsequently transferred to a thin gold film. Due to the obtained particle-to-film distance of 1.1 nm, the plasmonic mode of the nanorod is able to couple efficiently with the supporting metallic film, giving rise to a magnetic mode in the visible spectrum (721 nm). Conventional UV-vis-NIR measurements in close correlation with electromagnetic simulations provide evidence for the presence of a magnetic resonance on the macroscopic area. The herein presented scalable lithography-free fabrication process paves the road towards colloidal functional metasurfaces with an optical response in the effective magnetic permeability.
format Online
Article
Text
id pubmed-5058348
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-50583482016-10-12 Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces Mayer, Martin Tebbe, Moritz Kuttner, Christian Schnepf, Max J. König, Tobias A. F. Fery, Andreas Faraday Discuss Chemistry We demonstrate a template-assisted colloidal self-assembly approach for magnetic metasurfaces on macroscopic areas. The choice of anisotropic colloidal particle geometry, assembly pattern and metallic film is based on rational design criteria, taking advantage of mirror-charge effects for gold nanorods placed on gold film. Monodisperse gold nanorods prepared utilizing wet-chemistry are arranged with high precision on wrinkled templates to form linear array-type assemblies and subsequently transferred to a thin gold film. Due to the obtained particle-to-film distance of 1.1 nm, the plasmonic mode of the nanorod is able to couple efficiently with the supporting metallic film, giving rise to a magnetic mode in the visible spectrum (721 nm). Conventional UV-vis-NIR measurements in close correlation with electromagnetic simulations provide evidence for the presence of a magnetic resonance on the macroscopic area. The herein presented scalable lithography-free fabrication process paves the road towards colloidal functional metasurfaces with an optical response in the effective magnetic permeability. Royal Society of Chemistry 2016-10-06 2016-02-22 /pmc/articles/PMC5058348/ /pubmed/27411967 http://dx.doi.org/10.1039/c6fd00013d Text en This journal is © The Royal Society of Chemistry 2016 http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Chemistry
Mayer, Martin
Tebbe, Moritz
Kuttner, Christian
Schnepf, Max J.
König, Tobias A. F.
Fery, Andreas
Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces
title Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces
title_full Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces
title_fullStr Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces
title_full_unstemmed Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces
title_short Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces
title_sort template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058348/
https://www.ncbi.nlm.nih.gov/pubmed/27411967
http://dx.doi.org/10.1039/c6fd00013d
work_keys_str_mv AT mayermartin templateassistedcolloidalselfassemblyofmacroscopicmagneticmetasurfaces
AT tebbemoritz templateassistedcolloidalselfassemblyofmacroscopicmagneticmetasurfaces
AT kuttnerchristian templateassistedcolloidalselfassemblyofmacroscopicmagneticmetasurfaces
AT schnepfmaxj templateassistedcolloidalselfassemblyofmacroscopicmagneticmetasurfaces
AT konigtobiasaf templateassistedcolloidalselfassemblyofmacroscopicmagneticmetasurfaces
AT feryandreas templateassistedcolloidalselfassemblyofmacroscopicmagneticmetasurfaces