Cargando…
Phylogeographic structure in long‐tailed voles (Rodentia: Arvicolinae) belies the complex Pleistocene history of isolation, divergence, and recolonization of Northwest North America's fauna
Quaternary climate fluctuations restructured biodiversity across North American high latitudes through repeated episodes of range contraction, population isolation and divergence, and subsequent expansion. Identifying how species responded to changing environmental conditions not only allows us to e...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058534/ https://www.ncbi.nlm.nih.gov/pubmed/27777736 http://dx.doi.org/10.1002/ece3.2393 |
_version_ | 1782459257515409408 |
---|---|
author | Sawyer, Yadéeh E. Cook, Joseph A. |
author_facet | Sawyer, Yadéeh E. Cook, Joseph A. |
author_sort | Sawyer, Yadéeh E. |
collection | PubMed |
description | Quaternary climate fluctuations restructured biodiversity across North American high latitudes through repeated episodes of range contraction, population isolation and divergence, and subsequent expansion. Identifying how species responded to changing environmental conditions not only allows us to explore the mode and tempo of evolution in northern taxa, but also provides a basis for forecasting future biotic response across the highly variable topography of western North America. Using a multilocus approach under a Bayesian coalescent framework, we investigated the phylogeography of a wide‐ranging mammal, the long‐tailed vole, Microtus longicaudus. We focused on populations along the North Pacific Coast to refine our understanding of diversification by exploring the potentially compounding roles of multiple glacial refugia and more recent fragmentation of an extensive coastal archipelago. Through a combination of genetic data and species distribution models (SDMs), we found that historical climate variability influenced contemporary genetic structure, with multiple isolated locations of persistence (refugia) producing multiple divergent lineages (Beringian or northern, southeast Alaska or coastal, and southern or continental) during glacial advances. These vole lineages all occur along the North Pacific Coast where the confluence of numerous independent lineages in other species has produced overlapping zones of secondary contact, collectively a suture zone. Finally, we detected high levels of neoendemism due to complex island geography that developed in the last 10,000 years with the rising sea levels of the Holocene. |
format | Online Article Text |
id | pubmed-5058534 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50585342016-10-24 Phylogeographic structure in long‐tailed voles (Rodentia: Arvicolinae) belies the complex Pleistocene history of isolation, divergence, and recolonization of Northwest North America's fauna Sawyer, Yadéeh E. Cook, Joseph A. Ecol Evol Original Research Quaternary climate fluctuations restructured biodiversity across North American high latitudes through repeated episodes of range contraction, population isolation and divergence, and subsequent expansion. Identifying how species responded to changing environmental conditions not only allows us to explore the mode and tempo of evolution in northern taxa, but also provides a basis for forecasting future biotic response across the highly variable topography of western North America. Using a multilocus approach under a Bayesian coalescent framework, we investigated the phylogeography of a wide‐ranging mammal, the long‐tailed vole, Microtus longicaudus. We focused on populations along the North Pacific Coast to refine our understanding of diversification by exploring the potentially compounding roles of multiple glacial refugia and more recent fragmentation of an extensive coastal archipelago. Through a combination of genetic data and species distribution models (SDMs), we found that historical climate variability influenced contemporary genetic structure, with multiple isolated locations of persistence (refugia) producing multiple divergent lineages (Beringian or northern, southeast Alaska or coastal, and southern or continental) during glacial advances. These vole lineages all occur along the North Pacific Coast where the confluence of numerous independent lineages in other species has produced overlapping zones of secondary contact, collectively a suture zone. Finally, we detected high levels of neoendemism due to complex island geography that developed in the last 10,000 years with the rising sea levels of the Holocene. John Wiley and Sons Inc. 2016-08-29 /pmc/articles/PMC5058534/ /pubmed/27777736 http://dx.doi.org/10.1002/ece3.2393 Text en © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Sawyer, Yadéeh E. Cook, Joseph A. Phylogeographic structure in long‐tailed voles (Rodentia: Arvicolinae) belies the complex Pleistocene history of isolation, divergence, and recolonization of Northwest North America's fauna |
title | Phylogeographic structure in long‐tailed voles (Rodentia: Arvicolinae) belies the complex Pleistocene history of isolation, divergence, and recolonization of Northwest North America's fauna |
title_full | Phylogeographic structure in long‐tailed voles (Rodentia: Arvicolinae) belies the complex Pleistocene history of isolation, divergence, and recolonization of Northwest North America's fauna |
title_fullStr | Phylogeographic structure in long‐tailed voles (Rodentia: Arvicolinae) belies the complex Pleistocene history of isolation, divergence, and recolonization of Northwest North America's fauna |
title_full_unstemmed | Phylogeographic structure in long‐tailed voles (Rodentia: Arvicolinae) belies the complex Pleistocene history of isolation, divergence, and recolonization of Northwest North America's fauna |
title_short | Phylogeographic structure in long‐tailed voles (Rodentia: Arvicolinae) belies the complex Pleistocene history of isolation, divergence, and recolonization of Northwest North America's fauna |
title_sort | phylogeographic structure in long‐tailed voles (rodentia: arvicolinae) belies the complex pleistocene history of isolation, divergence, and recolonization of northwest north america's fauna |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058534/ https://www.ncbi.nlm.nih.gov/pubmed/27777736 http://dx.doi.org/10.1002/ece3.2393 |
work_keys_str_mv | AT sawyeryadeehe phylogeographicstructureinlongtailedvolesrodentiaarvicolinaebeliesthecomplexpleistocenehistoryofisolationdivergenceandrecolonizationofnorthwestnorthamericasfauna AT cookjosepha phylogeographicstructureinlongtailedvolesrodentiaarvicolinaebeliesthecomplexpleistocenehistoryofisolationdivergenceandrecolonizationofnorthwestnorthamericasfauna |