Cargando…

The CD25-binding antibody Daclizumab High-Yield Process has a distinct glycosylation pattern and reduced antibody-dependent cell-mediated cytotoxicity in comparison to Zenapax®

The CD25-binding antibody daclizumab high-yield process (DAC HYP) is an interleukin (IL)-2 signal modulating antibody that shares primary amino acid sequence and CD25 binding affinity with Zenapax®, a distinct form of daclizumab, which was approved for the prevention of acute organ rejection in pati...

Descripción completa

Detalles Bibliográficos
Autores principales: Ganguly, Bishu, Balasa, Balaji, Efros, Lyubov, Hinton, Paul R., Hartman, Stephen, Thakur, Archana, Xiong, Joanna M., Schmidt, Brian, Robinson, Randy R., Sornasse, Thierry, Vexler, Vladimir, Sheridan, James P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058627/
https://www.ncbi.nlm.nih.gov/pubmed/27367933
http://dx.doi.org/10.1080/19420862.2016.1207031
Descripción
Sumario:The CD25-binding antibody daclizumab high-yield process (DAC HYP) is an interleukin (IL)-2 signal modulating antibody that shares primary amino acid sequence and CD25 binding affinity with Zenapax®, a distinct form of daclizumab, which was approved for the prevention of acute organ rejection in patients receiving renal transplants as part of an immunosuppressive regimen that includes cyclosporine and corticosteroids. Comparison of the physicochemical properties of the two antibody forms revealed the glycosylation profile of DAC HYP differs from Zenapax in both glycan distribution and the types of oligosaccharides, most notably high-mannose, galactosylated and galactose-α-1,3-galactose (α-Gal) oligosaccharides, resulting in a DAC HYP antibody material that is structurally distinct from Zenapax. Although neither antibody elicited complement-dependent cytotoxicity in vitro, DAC HYP antibody had significantly reduced levels of antibody-dependent cell-mediated cytotoxicity (ADCC). The ADCC activity required natural killer (NK) cells, but not monocytes, suggesting the effects were mediated through binding to Fc-gamma RIII (CD16). Incubation of each antibody with peripheral blood mononuclear cells also caused the down-modulation of CD16 expression on NK cells and the CD16 down-modulation was greater for Zenapax in comparison to that observed for DAC HYP. The substantive glycosylation differences between the two antibody forms and corresponding greater Fc-mediated effector activities by Zenapax, including cell killing activity, manifest as a difference in the biological function and pharmacology between DAC HYP and Zenapax.