Cargando…
AirJump: Using Interfaces to Instantly Perform Simultaneous Extractions
[Image: see text] Analyte isolation is an important process that spans a range of biomedical disciplines, including diagnostics, research, and forensics. While downstream analytical techniques have advanced in terms of both capability and throughput, analyte isolation technology has lagged behind, i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058634/ https://www.ncbi.nlm.nih.gov/pubmed/27249333 http://dx.doi.org/10.1021/acsami.6b02555 |
_version_ | 1782459270332153856 |
---|---|
author | Berry, Scott M. Pezzi, Hannah M. LaVanway, Alex J. Guckenberger, David J. Anderson, Meghan A. Beebe, David J. |
author_facet | Berry, Scott M. Pezzi, Hannah M. LaVanway, Alex J. Guckenberger, David J. Anderson, Meghan A. Beebe, David J. |
author_sort | Berry, Scott M. |
collection | PubMed |
description | [Image: see text] Analyte isolation is an important process that spans a range of biomedical disciplines, including diagnostics, research, and forensics. While downstream analytical techniques have advanced in terms of both capability and throughput, analyte isolation technology has lagged behind, increasingly becoming the bottleneck in these processes. Thus, there exists a need for simple, fast, and easy to integrate analyte separation protocols to alleviate this bottleneck. Recently, a new class of technologies has emerged that leverages the movement of paramagnetic particle (PMP)-bound analytes through phase barriers to achieve a high efficiency separation in a single or a few steps. Specifically, the passage of a PMP/analyte aggregate through a phase interface (aqueous/air in this case) acts to efficiently “exclude” unbound (contaminant) material from PMP-bound analytes with higher efficiency than traditional washing-based solid-phase extraction (SPE) protocols (i.e., bind, wash several times, elute). Here, we describe for the first time a new type of “exclusion-based” sample preparation, which we term “AirJump”. Upon realizing that much of the contaminant carryover stems from interactions with the sample vessel surface (e.g., pipetting residue, wetting), we aim to eliminate the influence of that factor. Thus, AirJump isolates PMP-bound analyte by “jumping” analyte directly out of a free liquid/air interface. Through careful characterization, we have demonstrated the validity of AirJump isolation through comparison to traditional washing-based isolations. Additionally, we have confirmed the suitability of AirJump in three important independent biological isolations, including protein immunoprecipitation, viral RNA isolation, and cell culture gene expression analysis. Taken together, these data sets demonstrate that AirJump performs efficiently, with high analyte yield, high purity, no cross contamination, rapid time-to-isolation, and excellent reproducibility. |
format | Online Article Text |
id | pubmed-5058634 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-50586342016-10-12 AirJump: Using Interfaces to Instantly Perform Simultaneous Extractions Berry, Scott M. Pezzi, Hannah M. LaVanway, Alex J. Guckenberger, David J. Anderson, Meghan A. Beebe, David J. ACS Appl Mater Interfaces [Image: see text] Analyte isolation is an important process that spans a range of biomedical disciplines, including diagnostics, research, and forensics. While downstream analytical techniques have advanced in terms of both capability and throughput, analyte isolation technology has lagged behind, increasingly becoming the bottleneck in these processes. Thus, there exists a need for simple, fast, and easy to integrate analyte separation protocols to alleviate this bottleneck. Recently, a new class of technologies has emerged that leverages the movement of paramagnetic particle (PMP)-bound analytes through phase barriers to achieve a high efficiency separation in a single or a few steps. Specifically, the passage of a PMP/analyte aggregate through a phase interface (aqueous/air in this case) acts to efficiently “exclude” unbound (contaminant) material from PMP-bound analytes with higher efficiency than traditional washing-based solid-phase extraction (SPE) protocols (i.e., bind, wash several times, elute). Here, we describe for the first time a new type of “exclusion-based” sample preparation, which we term “AirJump”. Upon realizing that much of the contaminant carryover stems from interactions with the sample vessel surface (e.g., pipetting residue, wetting), we aim to eliminate the influence of that factor. Thus, AirJump isolates PMP-bound analyte by “jumping” analyte directly out of a free liquid/air interface. Through careful characterization, we have demonstrated the validity of AirJump isolation through comparison to traditional washing-based isolations. Additionally, we have confirmed the suitability of AirJump in three important independent biological isolations, including protein immunoprecipitation, viral RNA isolation, and cell culture gene expression analysis. Taken together, these data sets demonstrate that AirJump performs efficiently, with high analyte yield, high purity, no cross contamination, rapid time-to-isolation, and excellent reproducibility. American Chemical Society 2016-06-01 2016-06-22 /pmc/articles/PMC5058634/ /pubmed/27249333 http://dx.doi.org/10.1021/acsami.6b02555 Text en Copyright © 2016 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Berry, Scott M. Pezzi, Hannah M. LaVanway, Alex J. Guckenberger, David J. Anderson, Meghan A. Beebe, David J. AirJump: Using Interfaces to Instantly Perform Simultaneous Extractions |
title | AirJump:
Using Interfaces to Instantly Perform Simultaneous Extractions |
title_full | AirJump:
Using Interfaces to Instantly Perform Simultaneous Extractions |
title_fullStr | AirJump:
Using Interfaces to Instantly Perform Simultaneous Extractions |
title_full_unstemmed | AirJump:
Using Interfaces to Instantly Perform Simultaneous Extractions |
title_short | AirJump:
Using Interfaces to Instantly Perform Simultaneous Extractions |
title_sort | airjump:
using interfaces to instantly perform simultaneous extractions |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058634/ https://www.ncbi.nlm.nih.gov/pubmed/27249333 http://dx.doi.org/10.1021/acsami.6b02555 |
work_keys_str_mv | AT berryscottm airjumpusinginterfacestoinstantlyperformsimultaneousextractions AT pezzihannahm airjumpusinginterfacestoinstantlyperformsimultaneousextractions AT lavanwayalexj airjumpusinginterfacestoinstantlyperformsimultaneousextractions AT guckenbergerdavidj airjumpusinginterfacestoinstantlyperformsimultaneousextractions AT andersonmeghana airjumpusinginterfacestoinstantlyperformsimultaneousextractions AT beebedavidj airjumpusinginterfacestoinstantlyperformsimultaneousextractions |