Cargando…

Downregulation of miRNA-638 promotes angiogenesis and growth of hepatocellular carcinoma by targeting VEGF

The expression and function of microRNA-638 (miR-638) in hepatocellular carcinoma (HCC) remained unknown. Using the miRNA target prediction tools, we predicted that the vascular endothelial growth factor (VEGF) might be a direct target of miR-638. The aim of this study was to test the hypothesis tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Jiwen, Chen, Yanke, Zhao, Pu, Liu, Xi, Dong, Jian, Li, Jianhui, Huang, Chen, Wu, Rongqian, Lv, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058711/
https://www.ncbi.nlm.nih.gov/pubmed/27120793
http://dx.doi.org/10.18632/oncotarget.8930
Descripción
Sumario:The expression and function of microRNA-638 (miR-638) in hepatocellular carcinoma (HCC) remained unknown. Using the miRNA target prediction tools, we predicted that the vascular endothelial growth factor (VEGF) might be a direct target of miR-638. The aim of this study was to test the hypothesis that downregulation of miRNA-638 promotes angiogenesis and growth of HCC by targeting the VEGF signaling pathway. We found that miR-638 was significantly downregulated in HCC cells and clinical HCC specimens, and miR-638 levels were inversely correlated with tumor size, portal vein invasion and poor prognosis. Overexpression of miR-638 inhibited the processes of tumor angiogenesis in vitro and in vivo. The xenograft mouse model experiments showed miR-638 repressed tumor growth of HCC in vivo. Using a luciferase reporter assay, we identified VEGF as a direct target of miR-638. Subsequent investigation revealed that miR-638 expression was inversely correlated with VEGF expression in human HCC samples. Taken together, these results suggested that miR-638 is a novel therapeutic target for HCC and overexpression of miR-638 could suppress angiogenesis and tumor growth of HCC by inhibiting VEGF signaling.