Cargando…

Sexually dimorphic neuronal responses to social isolation

Many species use social networks to buffer the effects of stress. The mere absence of a social network, however, may also be stressful. We examined neuroendocrine, PVN CRH neurons and report that social isolation alters the intrinsic properties of these cells in sexually dimorphic fashion. Specifica...

Descripción completa

Detalles Bibliográficos
Autores principales: Senst, Laura, Baimoukhametova, Dinara, Sterley, Toni-Lee, Bains, Jaideep Singh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059136/
https://www.ncbi.nlm.nih.gov/pubmed/27725087
http://dx.doi.org/10.7554/eLife.18726
Descripción
Sumario:Many species use social networks to buffer the effects of stress. The mere absence of a social network, however, may also be stressful. We examined neuroendocrine, PVN CRH neurons and report that social isolation alters the intrinsic properties of these cells in sexually dimorphic fashion. Specifically, isolating preadolescent female mice from littermates for <24 hr increased first spike latency (FSL) and decreased excitability of CRH neurons. These changes were not evident in age-matched males. By contrast, subjecting either males (isolated or grouped) or group housed females to acute physical stress (swim), increased FSL. The increase in FSL following either social isolation or acute physical stress was blocked by the glucocorticoid synthesis inhibitor, metyrapone and mimicked by exogenous corticosterone. The increase in FSL results in a decrease in the excitability of CRH neurons. Our observations demonstrate that social isolation, but not acute physical stress has sex-specific effects on PVN CRH neurons. DOI: http://dx.doi.org/10.7554/eLife.18726.001