Cargando…

Self-amplified photo-induced gap quenching in a correlated electron material

Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equili...

Descripción completa

Detalles Bibliográficos
Autores principales: Mathias, S., Eich, S., Urbancic, J., Michael, S., Carr, A. V., Emmerich, S., Stange, A., Popmintchev, T., Rohwer, T., Wiesenmayer, M., Ruffing, A., Jakobs, S., Hellmann, S., Matyba, P., Chen, C., Kipp, L., Bauer, M., Kapteyn, H. C., Schneider, H. C., Rossnagel, K., Murnane, M. M., Aeschlimann, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059442/
https://www.ncbi.nlm.nih.gov/pubmed/27698341
http://dx.doi.org/10.1038/ncomms12902
Descripción
Sumario:Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe(2), our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation.