Cargando…
Self-amplified photo-induced gap quenching in a correlated electron material
Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equili...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059442/ https://www.ncbi.nlm.nih.gov/pubmed/27698341 http://dx.doi.org/10.1038/ncomms12902 |
_version_ | 1782459405114015744 |
---|---|
author | Mathias, S. Eich, S. Urbancic, J. Michael, S. Carr, A. V. Emmerich, S. Stange, A. Popmintchev, T. Rohwer, T. Wiesenmayer, M. Ruffing, A. Jakobs, S. Hellmann, S. Matyba, P. Chen, C. Kipp, L. Bauer, M. Kapteyn, H. C. Schneider, H. C. Rossnagel, K. Murnane, M. M. Aeschlimann, M. |
author_facet | Mathias, S. Eich, S. Urbancic, J. Michael, S. Carr, A. V. Emmerich, S. Stange, A. Popmintchev, T. Rohwer, T. Wiesenmayer, M. Ruffing, A. Jakobs, S. Hellmann, S. Matyba, P. Chen, C. Kipp, L. Bauer, M. Kapteyn, H. C. Schneider, H. C. Rossnagel, K. Murnane, M. M. Aeschlimann, M. |
author_sort | Mathias, S. |
collection | PubMed |
description | Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe(2), our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation. |
format | Online Article Text |
id | pubmed-5059442 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-50594422016-10-26 Self-amplified photo-induced gap quenching in a correlated electron material Mathias, S. Eich, S. Urbancic, J. Michael, S. Carr, A. V. Emmerich, S. Stange, A. Popmintchev, T. Rohwer, T. Wiesenmayer, M. Ruffing, A. Jakobs, S. Hellmann, S. Matyba, P. Chen, C. Kipp, L. Bauer, M. Kapteyn, H. C. Schneider, H. C. Rossnagel, K. Murnane, M. M. Aeschlimann, M. Nat Commun Article Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe(2), our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation. Nature Publishing Group 2016-10-04 /pmc/articles/PMC5059442/ /pubmed/27698341 http://dx.doi.org/10.1038/ncomms12902 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Mathias, S. Eich, S. Urbancic, J. Michael, S. Carr, A. V. Emmerich, S. Stange, A. Popmintchev, T. Rohwer, T. Wiesenmayer, M. Ruffing, A. Jakobs, S. Hellmann, S. Matyba, P. Chen, C. Kipp, L. Bauer, M. Kapteyn, H. C. Schneider, H. C. Rossnagel, K. Murnane, M. M. Aeschlimann, M. Self-amplified photo-induced gap quenching in a correlated electron material |
title | Self-amplified photo-induced gap quenching in a correlated electron material |
title_full | Self-amplified photo-induced gap quenching in a correlated electron material |
title_fullStr | Self-amplified photo-induced gap quenching in a correlated electron material |
title_full_unstemmed | Self-amplified photo-induced gap quenching in a correlated electron material |
title_short | Self-amplified photo-induced gap quenching in a correlated electron material |
title_sort | self-amplified photo-induced gap quenching in a correlated electron material |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059442/ https://www.ncbi.nlm.nih.gov/pubmed/27698341 http://dx.doi.org/10.1038/ncomms12902 |
work_keys_str_mv | AT mathiass selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT eichs selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT urbancicj selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT michaels selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT carrav selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT emmerichs selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT stangea selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT popmintchevt selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT rohwert selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT wiesenmayerm selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT ruffinga selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT jakobss selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT hellmanns selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT matybap selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT chenc selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT kippl selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT bauerm selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT kapteynhc selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT schneiderhc selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT rossnagelk selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT murnanemm selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial AT aeschlimannm selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial |