Cargando…

Self-amplified photo-induced gap quenching in a correlated electron material

Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equili...

Descripción completa

Detalles Bibliográficos
Autores principales: Mathias, S., Eich, S., Urbancic, J., Michael, S., Carr, A. V., Emmerich, S., Stange, A., Popmintchev, T., Rohwer, T., Wiesenmayer, M., Ruffing, A., Jakobs, S., Hellmann, S., Matyba, P., Chen, C., Kipp, L., Bauer, M., Kapteyn, H. C., Schneider, H. C., Rossnagel, K., Murnane, M. M., Aeschlimann, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059442/
https://www.ncbi.nlm.nih.gov/pubmed/27698341
http://dx.doi.org/10.1038/ncomms12902
_version_ 1782459405114015744
author Mathias, S.
Eich, S.
Urbancic, J.
Michael, S.
Carr, A. V.
Emmerich, S.
Stange, A.
Popmintchev, T.
Rohwer, T.
Wiesenmayer, M.
Ruffing, A.
Jakobs, S.
Hellmann, S.
Matyba, P.
Chen, C.
Kipp, L.
Bauer, M.
Kapteyn, H. C.
Schneider, H. C.
Rossnagel, K.
Murnane, M. M.
Aeschlimann, M.
author_facet Mathias, S.
Eich, S.
Urbancic, J.
Michael, S.
Carr, A. V.
Emmerich, S.
Stange, A.
Popmintchev, T.
Rohwer, T.
Wiesenmayer, M.
Ruffing, A.
Jakobs, S.
Hellmann, S.
Matyba, P.
Chen, C.
Kipp, L.
Bauer, M.
Kapteyn, H. C.
Schneider, H. C.
Rossnagel, K.
Murnane, M. M.
Aeschlimann, M.
author_sort Mathias, S.
collection PubMed
description Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe(2), our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation.
format Online
Article
Text
id pubmed-5059442
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50594422016-10-26 Self-amplified photo-induced gap quenching in a correlated electron material Mathias, S. Eich, S. Urbancic, J. Michael, S. Carr, A. V. Emmerich, S. Stange, A. Popmintchev, T. Rohwer, T. Wiesenmayer, M. Ruffing, A. Jakobs, S. Hellmann, S. Matyba, P. Chen, C. Kipp, L. Bauer, M. Kapteyn, H. C. Schneider, H. C. Rossnagel, K. Murnane, M. M. Aeschlimann, M. Nat Commun Article Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe(2), our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation. Nature Publishing Group 2016-10-04 /pmc/articles/PMC5059442/ /pubmed/27698341 http://dx.doi.org/10.1038/ncomms12902 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Mathias, S.
Eich, S.
Urbancic, J.
Michael, S.
Carr, A. V.
Emmerich, S.
Stange, A.
Popmintchev, T.
Rohwer, T.
Wiesenmayer, M.
Ruffing, A.
Jakobs, S.
Hellmann, S.
Matyba, P.
Chen, C.
Kipp, L.
Bauer, M.
Kapteyn, H. C.
Schneider, H. C.
Rossnagel, K.
Murnane, M. M.
Aeschlimann, M.
Self-amplified photo-induced gap quenching in a correlated electron material
title Self-amplified photo-induced gap quenching in a correlated electron material
title_full Self-amplified photo-induced gap quenching in a correlated electron material
title_fullStr Self-amplified photo-induced gap quenching in a correlated electron material
title_full_unstemmed Self-amplified photo-induced gap quenching in a correlated electron material
title_short Self-amplified photo-induced gap quenching in a correlated electron material
title_sort self-amplified photo-induced gap quenching in a correlated electron material
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059442/
https://www.ncbi.nlm.nih.gov/pubmed/27698341
http://dx.doi.org/10.1038/ncomms12902
work_keys_str_mv AT mathiass selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT eichs selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT urbancicj selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT michaels selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT carrav selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT emmerichs selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT stangea selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT popmintchevt selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT rohwert selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT wiesenmayerm selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT ruffinga selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT jakobss selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT hellmanns selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT matybap selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT chenc selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT kippl selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT bauerm selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT kapteynhc selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT schneiderhc selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT rossnagelk selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT murnanemm selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial
AT aeschlimannm selfamplifiedphotoinducedgapquenchinginacorrelatedelectronmaterial