Cargando…

Social Media Meets Big Urban Data: A Case Study of Urban Waterlogging Analysis

With the design and development of smart cities, opportunities as well as challenges arise at the moment. For this purpose, lots of data need to be obtained. Nevertheless, circumstances vary in different cities due to the variant infrastructures and populations, which leads to the data sparsity. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ningyu, Chen, Huajun, Chen, Jiaoyan, Chen, Xi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059775/
https://www.ncbi.nlm.nih.gov/pubmed/27774098
http://dx.doi.org/10.1155/2016/3264587
Descripción
Sumario:With the design and development of smart cities, opportunities as well as challenges arise at the moment. For this purpose, lots of data need to be obtained. Nevertheless, circumstances vary in different cities due to the variant infrastructures and populations, which leads to the data sparsity. In this paper, we propose a transfer learning method for urban waterlogging disaster analysis, which provides the basis for traffic management agencies to generate proactive traffic operation strategies in order to alleviate congestion. Existing work on urban waterlogging mostly relies on past and current conditions, as well as sensors and cameras, while there may not be a sufficient number of sensors to cover the relevant areas of a city. To this end, it would be helpful if we could transfer waterlogging. We examine whether it is possible to use the copious amounts of information from social media and satellite data to improve urban waterlogging analysis. Moreover, we analyze the correlation between severity, road networks, terrain, and precipitation. Moreover, we use a multiview discriminant transfer learning method to transfer knowledge to small cities. Experimental results involving cities in China and India show that our proposed framework is effective.