Cargando…

Encapsulation and Self-Superparasitism of Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae), a Parasitoid of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)

Endoparasitoids can be killed by host encapsulation, a cellular-mediated host immunological response against parasitism that involves hemocytes aggregation. As a counteracting strategy, many parasitoids can evade this host response through self-superparasitism. The objectives of this study were: 1)...

Descripción completa

Detalles Bibliográficos
Autores principales: Luna, María G., Desneux, Nicolas, Schneider, Marcela I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5061380/
https://www.ncbi.nlm.nih.gov/pubmed/27732609
http://dx.doi.org/10.1371/journal.pone.0163196
_version_ 1782459597150224384
author Luna, María G.
Desneux, Nicolas
Schneider, Marcela I.
author_facet Luna, María G.
Desneux, Nicolas
Schneider, Marcela I.
author_sort Luna, María G.
collection PubMed
description Endoparasitoids can be killed by host encapsulation, a cellular-mediated host immunological response against parasitism that involves hemocytes aggregation. As a counteracting strategy, many parasitoids can evade this host response through self-superparasitism. The objectives of this study were: 1) to describe the parasitoid Pseudapanteles dignus (Hymenoptera: Braconidae) early immature stages (egg and larva) encapsulation by the host Tuta absoluta (Lepidoptera: Gelechiidae), and 2) to determine the occurrence of self-superparasitism and the rate of escaping to encapsulation of this parasitoid. Knowledge of host-parasitoid immunological interaction is crucial when evaluating the potential of an endoparasitoid as a biological control candidate. Parasitoid-exposed T. absoluta larvae were dissected in vivo under light stereoscope microscope at 24-h intervals, for five days after exposition to detect encapsulation. The preimaginal stages of P. dignus and numbers of healthy and encapsulated immature parasitoids per host were recorded. Samples of parasitoid eggs and larvae were processed for SEM visualization of encapsulation. Necropsies evidenced that only the early first larval instar of P. dignus (up to 96 h-old) was partially or completely encapsulated. A non-melanized capsule, formed by layers of granulocyte-type hemocytes enveloping around the parasitoid body, was recorded. Approximately 50% of the parasitized T. absoluta larvae had significantly only one P. dignus egg, meanwhile supernumerary parasitization yielded up to seven immature parasitoids per host. The proportion of single-early first larval instar of P. dignus reached ≈ 0.5 and decreased significantly as the number of parasitoid individuals per host increased. P. dignus encapsulation and its ability to overcome with the host immune defense through self-superparasitism indicate that T. absoluta is a semi-permissive host for this parasitoid.
format Online
Article
Text
id pubmed-5061380
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-50613802016-10-27 Encapsulation and Self-Superparasitism of Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae), a Parasitoid of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) Luna, María G. Desneux, Nicolas Schneider, Marcela I. PLoS One Research Article Endoparasitoids can be killed by host encapsulation, a cellular-mediated host immunological response against parasitism that involves hemocytes aggregation. As a counteracting strategy, many parasitoids can evade this host response through self-superparasitism. The objectives of this study were: 1) to describe the parasitoid Pseudapanteles dignus (Hymenoptera: Braconidae) early immature stages (egg and larva) encapsulation by the host Tuta absoluta (Lepidoptera: Gelechiidae), and 2) to determine the occurrence of self-superparasitism and the rate of escaping to encapsulation of this parasitoid. Knowledge of host-parasitoid immunological interaction is crucial when evaluating the potential of an endoparasitoid as a biological control candidate. Parasitoid-exposed T. absoluta larvae were dissected in vivo under light stereoscope microscope at 24-h intervals, for five days after exposition to detect encapsulation. The preimaginal stages of P. dignus and numbers of healthy and encapsulated immature parasitoids per host were recorded. Samples of parasitoid eggs and larvae were processed for SEM visualization of encapsulation. Necropsies evidenced that only the early first larval instar of P. dignus (up to 96 h-old) was partially or completely encapsulated. A non-melanized capsule, formed by layers of granulocyte-type hemocytes enveloping around the parasitoid body, was recorded. Approximately 50% of the parasitized T. absoluta larvae had significantly only one P. dignus egg, meanwhile supernumerary parasitization yielded up to seven immature parasitoids per host. The proportion of single-early first larval instar of P. dignus reached ≈ 0.5 and decreased significantly as the number of parasitoid individuals per host increased. P. dignus encapsulation and its ability to overcome with the host immune defense through self-superparasitism indicate that T. absoluta is a semi-permissive host for this parasitoid. Public Library of Science 2016-10-12 /pmc/articles/PMC5061380/ /pubmed/27732609 http://dx.doi.org/10.1371/journal.pone.0163196 Text en © 2016 Luna et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Luna, María G.
Desneux, Nicolas
Schneider, Marcela I.
Encapsulation and Self-Superparasitism of Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae), a Parasitoid of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)
title Encapsulation and Self-Superparasitism of Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae), a Parasitoid of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)
title_full Encapsulation and Self-Superparasitism of Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae), a Parasitoid of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)
title_fullStr Encapsulation and Self-Superparasitism of Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae), a Parasitoid of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)
title_full_unstemmed Encapsulation and Self-Superparasitism of Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae), a Parasitoid of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)
title_short Encapsulation and Self-Superparasitism of Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae), a Parasitoid of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)
title_sort encapsulation and self-superparasitism of pseudapanteles dignus (muesebeck) (hymenoptera: braconidae), a parasitoid of tuta absoluta (meyrick) (lepidoptera: gelechiidae)
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5061380/
https://www.ncbi.nlm.nih.gov/pubmed/27732609
http://dx.doi.org/10.1371/journal.pone.0163196
work_keys_str_mv AT lunamariag encapsulationandselfsuperparasitismofpseudapantelesdignusmuesebeckhymenopterabraconidaeaparasitoidoftutaabsolutameyricklepidopteragelechiidae
AT desneuxnicolas encapsulationandselfsuperparasitismofpseudapantelesdignusmuesebeckhymenopterabraconidaeaparasitoidoftutaabsolutameyricklepidopteragelechiidae
AT schneidermarcelai encapsulationandselfsuperparasitismofpseudapantelesdignusmuesebeckhymenopterabraconidaeaparasitoidoftutaabsolutameyricklepidopteragelechiidae