Cargando…
Transit times and mean ages for nonautonomous and autonomous compartmental systems
We develop a theory for transit times and mean ages for nonautonomous compartmental systems. Using the McKendrick–von Förster equation, we show that the mean ages of mass in a compartmental system satisfy a linear nonautonomous ordinary differential equation that is exponentially stable. We then def...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5061853/ https://www.ncbi.nlm.nih.gov/pubmed/27038163 http://dx.doi.org/10.1007/s00285-016-0990-8 |
Sumario: | We develop a theory for transit times and mean ages for nonautonomous compartmental systems. Using the McKendrick–von Förster equation, we show that the mean ages of mass in a compartmental system satisfy a linear nonautonomous ordinary differential equation that is exponentially stable. We then define a nonautonomous version of transit time as the mean age of mass leaving the compartmental system at a particular time and show that our nonautonomous theory generalises the autonomous case. We apply these results to study a nine-dimensional nonautonomous compartmental system modeling the terrestrial carbon cycle, which is a modification of the Carnegie–Ames–Stanford approach model, and we demonstrate that the nonautonomous versions of transit time and mean age differ significantly from the autonomous quantities when calculated for that model. |
---|