Cargando…

Large Tunable Thermophase in Superconductor – Quantum Dot – Superconductor Josephson Junctions

In spite of extended efforts, detecting thermoelectric effects in superconductors has proven to be a challenging task, due to the inherent superconducting particle-hole symmetry. Here we present a theoretical study of an experimentally attainable Superconductor – Quantum Dot – Superconductor (SC-QD-...

Descripción completa

Detalles Bibliográficos
Autores principales: Kleeorin, Yaakov, Meir, Yigal, Giazotto, Francesco, Dubi, Yonatan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5062082/
https://www.ncbi.nlm.nih.gov/pubmed/27734919
http://dx.doi.org/10.1038/srep35116
Descripción
Sumario:In spite of extended efforts, detecting thermoelectric effects in superconductors has proven to be a challenging task, due to the inherent superconducting particle-hole symmetry. Here we present a theoretical study of an experimentally attainable Superconductor – Quantum Dot – Superconductor (SC-QD-SC) Josephson Junction. Using Keldysh Green’s functions we derive the exact thermo-phase and thermal response of the junction, and demonstrate that such a junction has highly tunable thermoelectric properties and a significant thermal response. The origin of these effects is the QD energy level placed between the SCs, which breaks particle-hole symmetry in a gradual manner, allowing, in the presence of a temperature gradient, for gate controlled appearance of a superconducting thermo-phase. This thermo-phase increases up to a maximal value of ±π/2 after which thermovoltage is expected to develop. Our calculations are performed in realistic parameter regimes, and we suggest an experimental setup which could be used to verify our predictions.