Cargando…
Probing the spinor nature of electronic states in nanosize non-collinear magnets
Non-collinear magnetization textures provide a route to novel device concepts in spintronics. These applications require laterally confined non-collinear magnets (NCM). A crucial aspect for potential applications is how the spatial proximity between the NCM and vacuum or another material impacts the...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5062547/ https://www.ncbi.nlm.nih.gov/pubmed/27721384 http://dx.doi.org/10.1038/ncomms13000 |
Sumario: | Non-collinear magnetization textures provide a route to novel device concepts in spintronics. These applications require laterally confined non-collinear magnets (NCM). A crucial aspect for potential applications is how the spatial proximity between the NCM and vacuum or another material impacts the magnetization texture on the nanoscale. We focus on a prototypical exchange-driven NCM given by the helical spin order of bilayer Fe on Cu(111). Spin-polarized scanning tunnelling spectroscopy and density functional theory reveal a nanosize- and proximity-driven modification of the electronic and magnetic structure of the NCM in interfacial contact with a ferromagnet or with vacuum. An intriguing non-collinearity between the local magnetization in the sample and the electronic magnetization probed above its surface results. It is a direct consequence of the spinor nature of electronic states in NCM. Our findings provide a possible route for advanced control of nanoscale spin textures by confinement. |
---|