Cargando…

A(a)LS: Ammonia-induced amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a dreadful, devastating and incurable motor neuron disease. Aetiologically, it is a multigenic, multifactorial and multiorgan disease. Despite intense research, ALS pathology remains unexplained. Following extensive literature review, this paper posits a new in...

Descripción completa

Detalles Bibliográficos
Autor principal: Parekh, Bhavin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000Research 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063041/
https://www.ncbi.nlm.nih.gov/pubmed/27785351
http://dx.doi.org/10.12688/f1000research.6364.1
Descripción
Sumario:Amyotrophic lateral sclerosis (ALS) is a dreadful, devastating and incurable motor neuron disease. Aetiologically, it is a multigenic, multifactorial and multiorgan disease. Despite intense research, ALS pathology remains unexplained. Following extensive literature review, this paper posits a new integrative explanation. This framework proposes that ammonia neurotoxicity is a main player in ALS pathogenesis. According to this explanation, a combination of impaired ammonia removal— mainly because of impaired hepatic urea cycle dysfunction—and increased ammoniagenesis— mainly because of impaired glycolytic metabolism in fast twitch skeletal muscle—causes chronic hyperammonia in ALS. In the absence of neuroprotective calcium binding proteins (calbindin, calreticulin and parvalbumin), elevated ammonia—a neurotoxin—damages motor neurons. Ammonia-induced motor neuron damage occurs through multiple mechanisms such as macroautophagy-endolysosomal impairment, endoplasmic reticulum (ER) stress, CDK5 activation, oxidative/nitrosative stress, neuronal hyperexcitability and neuroinflammation. Furthermore, the regional pattern of calcium binding proteins’ loss, owing to either ER stress and/or impaired oxidative metabolism, determines clinical variability of ALS. Most importantly, this new framework can be generalised to explain other neurodegenerative disorders such as Huntington’s disease and Parkinsonism.