Cargando…

Transthyretin represses neovascularization in diabetic retinopathy

PURPOSE: The apoptosis of human umbilical vein endothelial cells has been reportedly induced by the protein transthyretin (TTR). In human ocular tissue, TTR is generally considered to be secreted mainly by retinal pigment epithelial cells (hRPECs); however, whether TTR affects the development of neo...

Descripción completa

Detalles Bibliográficos
Autores principales: Shao, Jun, Yao, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063089/
https://www.ncbi.nlm.nih.gov/pubmed/27746673
Descripción
Sumario:PURPOSE: The apoptosis of human umbilical vein endothelial cells has been reportedly induced by the protein transthyretin (TTR). In human ocular tissue, TTR is generally considered to be secreted mainly by retinal pigment epithelial cells (hRPECs); however, whether TTR affects the development of neovascularization in diabetic retinopathy (DR) remains unclear. METHODS: Natural and simulated DR media were used to culture human retinal microvascular endothelial cells (hRECs). Hyperglycemia was simulated by increasing the glucose concentration from 5.5 mM up to 25 mM, while hypoxia was induced with 200 µM CoCl(2). To understand the effects of TTR on hRECs, cell proliferation was investigated under natural and DR conditions. Overexpression of TTR, an in vitro wound-healing assay, and a tube formation assay were employed to study the repression of TTR on hRECs. Real-time fluorescence quantitative PCR (qRT-PCR) was used to study the mRNA levels of DR-related genes, such as Tie2, VEGFR1, VEGFR2, Angpt1, and Angpt2. RESULTS: The proliferation of hRECs was significantly decreased in the simulated hyperglycemic and hypoxic DR environments. The cells were further repressed by added exogenous or endogenous TTR only under hyperglycemic conditions. The in vitro migration and tube formation processes of the hRECs were inhibited with TTR; furthermore, in the hyperglycemia and hyperglycemia/hypoxia environments, the levels of Tie2 and Angpt1 mRNA were enhanced with exogenous TTR, while those of VEGFR1, VEGFR2, and Angpt1 were repressed. CONCLUSIONS: In hyperglycemia, the proliferation, migration, and neovascularization of hRECs were significantly inhibited by TTR. The key genes for DR neovascularization, including Tie2, VEGFR1, VEGFR2, Angpt1, and Angpt2, were regulated by TTR. Under DR conditions, TTR significantly represses neovascularization by inhibiting the proliferation, migration and tube formation of hRECs.