Cargando…
Development and Dynamic Regulation of Mitochondrial Network in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs
Mitochondria are critical to neurogenesis, but the mechanisms of mitochondria in neurogenesis have not been well explored. We fully characterized mitochondrial alterations and function in relation to the development of human induced pluripotent stem cell (hiPSC)-derived dopaminergic (DA) neurons. Fo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063542/ https://www.ncbi.nlm.nih.gov/pubmed/27666790 http://dx.doi.org/10.1016/j.stemcr.2016.08.014 |
_version_ | 1782459996474179584 |
---|---|
author | Fang, Du Qing, Yu Yan, Shijun Chen, Doris Yan, Shirley ShiDu |
author_facet | Fang, Du Qing, Yu Yan, Shijun Chen, Doris Yan, Shirley ShiDu |
author_sort | Fang, Du |
collection | PubMed |
description | Mitochondria are critical to neurogenesis, but the mechanisms of mitochondria in neurogenesis have not been well explored. We fully characterized mitochondrial alterations and function in relation to the development of human induced pluripotent stem cell (hiPSC)-derived dopaminergic (DA) neurons. Following directed differentiation of hiPSCs to DA neurons, mitochondria in these neurons exhibit pronounced changes during differentiation, including mature neurophysiology characterization and functional synaptic network formation. Inhibition of mitochondrial respiratory chains via application of complex IV inhibitor KCN (potassium cyanide) or complex I inhibitor rotenone restricted neurogenesis of DA neurons. These results demonstrated the direct importance of mitochondrial development and bioenergetics in DA neuronal differentiation. Our study also provides a neurophysiologic model of mitochondrial involvement in neurogenesis, which will enhance our understanding of the role of mitochondrial dysfunctions in neurodegenerative diseases. |
format | Online Article Text |
id | pubmed-5063542 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-50635422016-10-19 Development and Dynamic Regulation of Mitochondrial Network in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs Fang, Du Qing, Yu Yan, Shijun Chen, Doris Yan, Shirley ShiDu Stem Cell Reports Article Mitochondria are critical to neurogenesis, but the mechanisms of mitochondria in neurogenesis have not been well explored. We fully characterized mitochondrial alterations and function in relation to the development of human induced pluripotent stem cell (hiPSC)-derived dopaminergic (DA) neurons. Following directed differentiation of hiPSCs to DA neurons, mitochondria in these neurons exhibit pronounced changes during differentiation, including mature neurophysiology characterization and functional synaptic network formation. Inhibition of mitochondrial respiratory chains via application of complex IV inhibitor KCN (potassium cyanide) or complex I inhibitor rotenone restricted neurogenesis of DA neurons. These results demonstrated the direct importance of mitochondrial development and bioenergetics in DA neuronal differentiation. Our study also provides a neurophysiologic model of mitochondrial involvement in neurogenesis, which will enhance our understanding of the role of mitochondrial dysfunctions in neurodegenerative diseases. Elsevier 2016-09-22 /pmc/articles/PMC5063542/ /pubmed/27666790 http://dx.doi.org/10.1016/j.stemcr.2016.08.014 Text en © 2016 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Fang, Du Qing, Yu Yan, Shijun Chen, Doris Yan, Shirley ShiDu Development and Dynamic Regulation of Mitochondrial Network in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs |
title | Development and Dynamic Regulation of Mitochondrial Network in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs |
title_full | Development and Dynamic Regulation of Mitochondrial Network in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs |
title_fullStr | Development and Dynamic Regulation of Mitochondrial Network in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs |
title_full_unstemmed | Development and Dynamic Regulation of Mitochondrial Network in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs |
title_short | Development and Dynamic Regulation of Mitochondrial Network in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs |
title_sort | development and dynamic regulation of mitochondrial network in human midbrain dopaminergic neurons differentiated from ipscs |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063542/ https://www.ncbi.nlm.nih.gov/pubmed/27666790 http://dx.doi.org/10.1016/j.stemcr.2016.08.014 |
work_keys_str_mv | AT fangdu developmentanddynamicregulationofmitochondrialnetworkinhumanmidbraindopaminergicneuronsdifferentiatedfromipscs AT qingyu developmentanddynamicregulationofmitochondrialnetworkinhumanmidbraindopaminergicneuronsdifferentiatedfromipscs AT yanshijun developmentanddynamicregulationofmitochondrialnetworkinhumanmidbraindopaminergicneuronsdifferentiatedfromipscs AT chendoris developmentanddynamicregulationofmitochondrialnetworkinhumanmidbraindopaminergicneuronsdifferentiatedfromipscs AT yanshirleyshidu developmentanddynamicregulationofmitochondrialnetworkinhumanmidbraindopaminergicneuronsdifferentiatedfromipscs |