Cargando…
Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III–transcribed genes in budding yeast
The association of RNA polymerase III (Pol III)–transcribed genes with nucleoli seems to be an evolutionarily conserved property of the spatial organization of eukaryotic genomes. However, recent studies of global chromosome architecture in budding yeast have challenged this view. We used live-cell...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063623/ https://www.ncbi.nlm.nih.gov/pubmed/27559135 http://dx.doi.org/10.1091/mbc.E16-03-0145 |
_version_ | 1782460014940651520 |
---|---|
author | Belagal, Praveen Normand, Christophe Shukla, Ashutosh Wang, Renjie Léger-Silvestre, Isabelle Dez, Christophe Bhargava, Purnima Gadal, Olivier |
author_facet | Belagal, Praveen Normand, Christophe Shukla, Ashutosh Wang, Renjie Léger-Silvestre, Isabelle Dez, Christophe Bhargava, Purnima Gadal, Olivier |
author_sort | Belagal, Praveen |
collection | PubMed |
description | The association of RNA polymerase III (Pol III)–transcribed genes with nucleoli seems to be an evolutionarily conserved property of the spatial organization of eukaryotic genomes. However, recent studies of global chromosome architecture in budding yeast have challenged this view. We used live-cell imaging to determine the intranuclear positions of 13 Pol III–transcribed genes. The frequency of association with nucleolus and nuclear periphery depends on linear genomic distance from the tethering elements—centromeres or telomeres. Releasing the hold of the tethering elements by inactivating centromere attachment to the spindle pole body or changing the position of ribosomal DNA arrays resulted in the association of Pol III–transcribed genes with nucleoli. Conversely, ectopic insertion of a Pol III–transcribed gene in the vicinity of a centromere prevented its association with nucleolus. Pol III–dependent transcription was independent of the intranuclear position of the gene, but the nucleolar recruitment of Pol III–transcribed genes required active transcription. We conclude that the association of Pol III–transcribed genes with the nucleolus, when permitted by global chromosome architecture, provides nucleolar and/or nuclear peripheral anchoring points contributing locally to intranuclear chromosome organization. |
format | Online Article Text |
id | pubmed-5063623 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-50636232016-12-30 Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III–transcribed genes in budding yeast Belagal, Praveen Normand, Christophe Shukla, Ashutosh Wang, Renjie Léger-Silvestre, Isabelle Dez, Christophe Bhargava, Purnima Gadal, Olivier Mol Biol Cell Articles The association of RNA polymerase III (Pol III)–transcribed genes with nucleoli seems to be an evolutionarily conserved property of the spatial organization of eukaryotic genomes. However, recent studies of global chromosome architecture in budding yeast have challenged this view. We used live-cell imaging to determine the intranuclear positions of 13 Pol III–transcribed genes. The frequency of association with nucleolus and nuclear periphery depends on linear genomic distance from the tethering elements—centromeres or telomeres. Releasing the hold of the tethering elements by inactivating centromere attachment to the spindle pole body or changing the position of ribosomal DNA arrays resulted in the association of Pol III–transcribed genes with nucleoli. Conversely, ectopic insertion of a Pol III–transcribed gene in the vicinity of a centromere prevented its association with nucleolus. Pol III–dependent transcription was independent of the intranuclear position of the gene, but the nucleolar recruitment of Pol III–transcribed genes required active transcription. We conclude that the association of Pol III–transcribed genes with the nucleolus, when permitted by global chromosome architecture, provides nucleolar and/or nuclear peripheral anchoring points contributing locally to intranuclear chromosome organization. The American Society for Cell Biology 2016-10-15 /pmc/articles/PMC5063623/ /pubmed/27559135 http://dx.doi.org/10.1091/mbc.E16-03-0145 Text en © 2016 Belagal et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. |
spellingShingle | Articles Belagal, Praveen Normand, Christophe Shukla, Ashutosh Wang, Renjie Léger-Silvestre, Isabelle Dez, Christophe Bhargava, Purnima Gadal, Olivier Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III–transcribed genes in budding yeast |
title | Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III–transcribed genes in budding yeast |
title_full | Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III–transcribed genes in budding yeast |
title_fullStr | Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III–transcribed genes in budding yeast |
title_full_unstemmed | Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III–transcribed genes in budding yeast |
title_short | Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III–transcribed genes in budding yeast |
title_sort | decoding the principles underlying the frequency of association with nucleoli for rna polymerase iii–transcribed genes in budding yeast |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063623/ https://www.ncbi.nlm.nih.gov/pubmed/27559135 http://dx.doi.org/10.1091/mbc.E16-03-0145 |
work_keys_str_mv | AT belagalpraveen decodingtheprinciplesunderlyingthefrequencyofassociationwithnucleoliforrnapolymeraseiiitranscribedgenesinbuddingyeast AT normandchristophe decodingtheprinciplesunderlyingthefrequencyofassociationwithnucleoliforrnapolymeraseiiitranscribedgenesinbuddingyeast AT shuklaashutosh decodingtheprinciplesunderlyingthefrequencyofassociationwithnucleoliforrnapolymeraseiiitranscribedgenesinbuddingyeast AT wangrenjie decodingtheprinciplesunderlyingthefrequencyofassociationwithnucleoliforrnapolymeraseiiitranscribedgenesinbuddingyeast AT legersilvestreisabelle decodingtheprinciplesunderlyingthefrequencyofassociationwithnucleoliforrnapolymeraseiiitranscribedgenesinbuddingyeast AT dezchristophe decodingtheprinciplesunderlyingthefrequencyofassociationwithnucleoliforrnapolymeraseiiitranscribedgenesinbuddingyeast AT bhargavapurnima decodingtheprinciplesunderlyingthefrequencyofassociationwithnucleoliforrnapolymeraseiiitranscribedgenesinbuddingyeast AT gadalolivier decodingtheprinciplesunderlyingthefrequencyofassociationwithnucleoliforrnapolymeraseiiitranscribedgenesinbuddingyeast |