Cargando…

Shelf life stability comparison in air for solution processed pristine PDPP3T polymer and doped spiro-OMeTAD as hole transport layer for perovskite solar cell

This data in brief includes forward and reverse scanned current density–voltage (J–V) characteristics of perovskite solar cells with PDPP3T and spiro-OMeTAD as HTL, stability testing conditions of perovskite solar cell shelf life in air for both PDPP3T and spiro-OMeTAD as HTL as per the description...

Descripción completa

Detalles Bibliográficos
Autores principales: Dubey, Ashish, Adhikari, Nirmal, Venkatesan, Swaminathan, Gu, Shaopeng, Khatiwada, Devendra, Wang, Qi, Mohammad, Lal, Kumar, Mukesh, Qiao, Qiquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063754/
https://www.ncbi.nlm.nih.gov/pubmed/27761487
http://dx.doi.org/10.1016/j.dib.2016.02.021
Descripción
Sumario:This data in brief includes forward and reverse scanned current density–voltage (J–V) characteristics of perovskite solar cells with PDPP3T and spiro-OMeTAD as HTL, stability testing conditions of perovskite solar cell shelf life in air for both PDPP3T and spiro-OMeTAD as HTL as per the description in Ref. [1], and individual J–V performance parameters acquired with increasing time exposed in ambient air are shown for both type of devices using PDPP3T and spiro-OMeTAD as HTL. The data collected in this study compares the device stability with time for both PDPP3T and spiro-OMeTAD based perovskite solar cells and is directly related to our research article “solution processed pristine PDPP3T polymer as hole transport layer for efficient perovskite solar cells with slower degradation” [2].