Cargando…
Synchronization of networks of chaotic oscillators: Structural and dynamical datasets
We provide the topological structure of a series of N=28 Rössler chaotic oscillators diffusively coupled through one of its variables. The dynamics of the y variable describing the evolution of the individual nodes of the network are given for a wide range of coupling strengths. Datasets capture the...
Autores principales: | Sevilla-Escoboza, Ricardo, Buldú, Javier M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063795/ https://www.ncbi.nlm.nih.gov/pubmed/27761501 http://dx.doi.org/10.1016/j.dib.2016.03.097 |
Ejemplares similares
-
Experimental datasets of networks of nonlinear oscillators: Structure and dynamics during the path to synchronization
por: Vera-Ávila, V.P., et al.
Publicado: (2019) -
Inferring the connectivity of coupled oscillators from time-series statistical similarity analysis
por: Tirabassi, Giulio, et al.
Publicado: (2015) -
Identifiability of structural networks of nonlinear electronic oscillators
por: Vera-Ávila, V. P., et al.
Publicado: (2020) -
Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators
por: Xu, Kesheng, et al.
Publicado: (2018) -
Inter-layer synchronization in non-identical multi-layer networks
por: Leyva, I., et al.
Publicado: (2017)