Cargando…

A Novel Graph-based Algorithm to Infer Recurrent Copy Number Variations in Cancer

Many cancers have been linked to copy number variations (CNVs) in the genomic DNA. Although there are existing methods to analyze CNVs from individual samples, cancer-causing genes are more frequently discovered in regions where CNVs are common among tumor samples, also known as recurrent CNVs. Inte...

Descripción completa

Detalles Bibliográficos
Autores principales: Chi, Chen, Ajwad, Rasif, Kuang, Qin, Hu, Pingzhao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Libertas Academica 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063805/
https://www.ncbi.nlm.nih.gov/pubmed/27773988
http://dx.doi.org/10.4137/CIN.S39368
Descripción
Sumario:Many cancers have been linked to copy number variations (CNVs) in the genomic DNA. Although there are existing methods to analyze CNVs from individual samples, cancer-causing genes are more frequently discovered in regions where CNVs are common among tumor samples, also known as recurrent CNVs. Integrating multiple samples and locating recurrent CNV regions remain a challenge, both computationally and conceptually. We propose a new graph-based algorithm for identifying recurrent CNVs using the maximal clique detection technique. The algorithm has an optimal solution, which means all maximal cliques can be identified, and guarantees that the identified CNV regions are the most frequent and that the minimal regions have been delineated among tumor samples. The algorithm has successfully been applied to analyze a large cohort of breast cancer samples and identified some breast cancer-associated genes and pathways.